Biology and Life Sciences

Biology and Life Sciences

Antinutrient and Micronutrient contents of processed “Nturukpa” (Pterocarpus santalinoides) seed powder

Pages: 15  ,  Volume: 16  ,  Issue: 1 , November   2018
Received: 15 Nov 2018  ,  Published: 22 November 2018
Views: 36  ,  Download: 17

Authors

# Author Name
1 Anyalogbu, Ernest A. A.
2 Nweje-Anyalowu, Paul C.
3 Nnoli, Matthew C.
4 Ibeneme, Chisom S.
5 Chigbu, Stella C.

Abstract

The antinutrient and micronutrient (minerals and vitamins) contents of processed and raw seeds of “Nturukpa” (Pterocarpus santalinoides), a wild plant in Nigeria were analyzed using accepted methods. The various quantities (in mg/100g sample) of the antinutrients ranging from hydrogen cyanide (11.25±1.46), through alkaloids, saponins, flavonoids, oxalates, tannins, phytic acid to phynols (0.18±0.02) contained in raw “Nturukpa” (Pterocarpus santalinoides) seed powder were reduced by 4.98% (in saponins) to 63.64% (in oxalates) when processed. In mg/100g sample, the micronutrients: P (86.21±16.48), Na (16.07±1.76), Fe (0.68±0.02) and K (0.48±0.12) and, Ascobate (5.87±0.84), B3 (1.32±0.41), and B2 (0.31±0.05) were respectively the most abundant minerals and vitamins in the raw sample. Except for potassium and vitamin D that were not affected by processing, the concentrations of other micronutrients were diversely increased. The processed plant food, relative to the established physiologically tolerable limits for the antinutrients is safe for human consumption and an excellent source of the minerals: Fe, Zn, P, I, Mn, Cu and Se; the B vitamins and Ascobate (vitamin C) as 1kg could supply substantial proportion of the RDA for the nutrients.

Keywords

  • Antinutrients
  • micronutrient
  • minerals
  • Pterocarpus santalinoides
  • vitamins
  • References

    Adesuyi, A. O., Awosanya, O. A., Adaramola, F. B. and Omeonu, A. I., 2012. Nutritional and phytochemical screening of Aloe barbadensis. Current Research of J. of Biol. Sci. 4(1), 4-9. Admassu, S., 2009. Potential Health Benefits and Problems Associated with Phytochemical in Food Legumes. East African J. of Sci. 3(2), 116-133. Agiang, M., Mgbang, J., Essien, N. and Peters, H., 2016. Proximate and Phytochemical Composition of Some Lesser Known Leafy Vegetables Consumed In Northern Senatorial District of Cross River State, Nigeria. World J. of Nutri. and Health, 4(1). 16-21. Akande, K. E., Doma, U. D., Agu, H. O. and Adamu, H. M., 2010. Major anti-nutrients found in plant protein sources: Their effect on nutrition. Pakistan J. of Nutri., 9, 827-832. Akinyele, B. J. and Oloruntoba, O. S., 2013. Comparative studies on Citrullus vulgaris, Citrullus colocynthis and Cucumeropsis mannii for ‘Ogiri’ production. British Microbiology Research J., 3(1), 1-18. Albers, N., Gotterbarm, G., Heimbeck, W., Keller, T., Seehawer, J., Tran, T. D., 2002. Vitamins in Animal Nutrition. Germany, Agrimedia GmbH, AWT Aluko, B. T., Oloyede, O. I and Afolayan, A. J., 2012. Phytochemical and nutrient compositions of the leaves of Ocimum canuna Sims. African J. of Biotechnol., 11(63), 12697-12701. Anyalogbu E. A., and Ezejiofor T. I. N., 2017. Effect Of Processing On Antinutrients Contents Of African Elemi (Canarium Schweinfurthii) And African Walnut (Plukenetia Conophora) Consumed As Traditional Snacks In Nigeria. Int’l J. of Scientific and Technol. Res. 6(7). 383 - 391 Anyalogbu, E. A. Onyeike, E. N. and Monanu, M. O., 2014. Mineral and Vitamin Concentrations of Heat Processed Plukenetia conophora Seed Kernel Consumed in Nigeria. J. of Scientific Res. & Reports. 3(20). 2694-2708. AOAC (Association of Official Analytical Chemists), 2006. Codex – Adopted – AOAC Method. AOAC International. 50(1).1-2. Boham, B. A., and Kocipai-Abyazan, C., 1994. Flavonoids and condensed tannins from leaves of Hawavan Vaccininium vaticulum and Vaccininium vicalycinium. Pacific Sci. 48, 458-463. Brown, K. M., Arthur, J. R., 2001. Selenium, selenoproteins and human health: A review. Public Health Nutrition. 4(2). 593–599. Bureau, D. P., Harris, A. M., and Cho, C. Y., 1998.The effects of purifie alcohol extracts from soy products on feed intake and growth of Chinook salmon (Oncorhynchus tshawytscha) and rainbow trout (Oncorhynchus mykiss). Aquaculture, 196, 27-43. Camera, F., Amaro, C. A., 2003. Nutritional aspect of zinc availability. Int’l J. of Fd Sci. and Nutri. 47:143–151. Carvalho, A. M. and Barata, A. M., 2017. The consumption of wild edible plants. In: Ferreira, I. C. F. R., Morales, P. and Barros, L. (Edn). Wild Plants, Mushrooms and Nuts: Functional Food Properties and Applications. Hoboken NJ. US. John Wiley & Sons, Ltd. Christopher, A. E. and Dosunmu, M .I. 2011. Chemical evaluation of proximate composition, ascorbic acid and anti-nutrients content of African star apple (Chrysophyllum afrcanum) fruit. Int’l J. of Res. and Reviews in Appl. Sci. 9(1) 146-149. Cressey, P. J. and Thomson, B. M., 2007. Scoping Risk from Natural Toxins In New Zealand Crop Plants. Institute of Environmental Science and Research Limited (“ESR”), Christchurch, New Zealand. Delange, F., 1994. The disorders induced by iodine deficiency. Thyroid.4:107-28. Edeoga, H. O., Okwu, D. E. and Mbaebie, B. O., 2005.Phytochemical constituents of some Nigerian medicinal plants. African J. of Biotechnol. 4(7), 685-688. Egbuna, C. and Ifemeje, J. C., 2015. Biological Functions and Anti-nutritional Effects of Phytochemicals in Living System. IOSR J. of Pharmacy and Biol. Sci. (IOSR-JPBS). 10(2;III). 10-19. Enechi, O. C., Ugwu, K. K., Ugwu, O. P.C. and Omeh, Y. S., 2013. Evaluation of the antinutrient levels of Ceiba pentandra leaves. Int’l J. of Res. and Reviews in Pharmacy and Appl. Sci. 3(3), 394-400. Fennema, O. R., 1985. Food Chemistry. (2nd ed.). New York: Marcel Dekker, Inc. Fowomola, M. A., 2010. Nutritional and antinutritional values of bojer (Argyreia nervosa) seeds. Continental J. Fd Sci. and Technol. 4, 14-23. Gemede, H. F., Haki, G. D., Beyene, F., Woldegiorgis, A. Z. and Rakshit, S. K., 2015. Proximate, Mineral and Antinutrient Compositions of Indigenous Okra (Abelmoschus esculentus) Pod Accessions: Implications for Mineral Bioavailability. J. of Nutri. and Fd Sci. S3:003. Gernah, D. I., Ega, B. M., Umoh, U. E., 2012. Effect of boiling time on the quality of Zogale: A snack food produced from peanut (Arachis hypogea) cake and boiled Moringa oleifera leaves. African J. of Fd Sci. 6(10):287-293. Gupta, R. K., Gangoliya, S. S. and Singh, N. K., 2015. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grain. J of Fd Sci. Technol. 52(2). 676 – 684. Hollosy, F. and Keri, G., 2004. Plant-derived protein tyrosine kinase inhibitors as anticancer agents. Current Medicinal Chemistry - Anti-Cancer Agents, 4 (2), 173-197. Ibrahim, T. A. and Fagbohun, E. D., 2013. Phytochemical and mineral quality of seeds of Buchhholzia coriacea. J. of Appl. Phytotechnol. in Environmental Sanitation, 2(4), 121-126. Imaobong, U. and Bassey, E. 2012. Effects of Heating Temperature and time on the Nutrients and Antinutrients Composition of Telfairia occidentalis (Hook F.), Int’l J. of Modern Chem. 3(1): 14-22. Institute of Medicine, IOM. 2006. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements. Washington, DC: The National Academies Press. Inuwa, H. M., Aina, V. O., Gabi, B., Aimola, I. and Toyin. A., 2011. Comparative Determination of Antinutritional Factors in Groundnut Oil and Palm Oil. Adv. J. of Fd Sci. and Technol. 3(4). 275-279. IPCS (International Programme on Chemical Safety). 1994. Phenol health and safety guide (Health and Safety Guide No. 88). World Health Organization, Geneva, Switzerland. Kanakis, C. D., Tarantilis, P. A., Polissiou, M. G., Diamantoglou, S. and Tajmir-Riahi, H. A., 2005. DNA interaction with naturally occurring antioxidant flavonoids quercetin, kaempferol, and delphinidin. J. Biomolecule Structure Dynamics, 22(6), 719-24. Keay, R. W. 1989. Trees of Nigeria. Claredon Press, Oxford. Pp 493-497 Khokhar, S. and Owusu-Apenten, R. K. 2003. Antinutritional factors in food legumes and effects of processing. In The Role of food, Agriculture, Forestry and Fisheries in Human Nutrition, 1st Edn. Encyclopedia of Life Support Systems (EOLSS). Publishers Co Ltd., Oxford, UK. p.1-10. Kraus, T. E. C., Dahlgren, R. A. and Zasoski, R. J., 2003. Tannins in nutrient dynamics of forest ecosystems- A review. Plant and Soil, 256, 41-66. Landete, J. M., 2013. Dietary intake of natural antioxidants: vitamins and polyphenols. Critical Reviews in Fd Sci. and Nutri. 53(7):706 -721. Lorenz, A. J., Scott, M. P. and Lamkey, K. R. (2007). Quantitative Determination of Phytate and Inorganic Phosphorus for Maize Breeding. Crop Science. 47:600–606. Makkar, H. P. S., Siddhuraju, S. and Becker, K., 2007. Plant Secondary Metabolites. Methods in Molecular Biology (vol. 393). New York: Springer. McDonald, P., Edward, R. A., Greenhalti, F. D., Morgan, C. A., 1995. Animal Nutrition. Prentices Hall, London. 101–122. Misra, S. and Misra, M. K. 2014. Nutritional evaluation of some leafy vegetable used by the tribal and rural people of south Odisha, India. J. of Natural Product & Plant Resources, 4(1). 23-28, Monanu, M. O., Anyalogbu, E. A. and Onyeike, E. N., 2014. Effect of Maceration Time on Micronutrient Concentrations of Canarium schweinfurthii Pulp Flour. Adv. in Res. 2(11). 605 – 617. Monanu, M. O., Anyalogbu, E. A. and Onyeike, E. N., 2014. Effect of Maceration Time on Micronutrient Concentrations of Canarium schweinfurthii Pulp Flour. Adv. in Res. 2(11). 605 – 617. Musa, A. and Ogbadoyi, E. O., 2012. Effect of Processing Methods on Some Micronutrients, Antinutrients and Toxic Substances in Hibiscus Sabdariffa. Asian J. of Biochem. 7. 63-79. Ndukwe, O.k.and Ikpeama, A., 2013. Comparative Evalutation of the Phytochemical and Proximate Constituents of Oha (Pterocarpus Soyansii) and Nturukpa (Pterocarpus Santalinoides) Leaves. Int’l J. of Acad. Res. in Progressive Edu. and Dev. 2(3):22-31. Norman, A. and Joseph, N., 1995. Food Science 3rd ed. CBC processing. 432-434. Odeh, I. C. and Tor-Anyiin, T. A., 2014. Phytochemical and Antimicrobial Evaluation of Leaf-extracts of Pterocarpus santalinoides. European J. of Medicinal Plants. 4(1): 105-115. Oderinde, R. A., Ajayi, I. A., Adewuyi, A., 2009. Evaluation of the mineral nutrients, characterization and some possible uses of Blighia unijugata Bak seed and seed oil. Electronic J. of Envir. Agric. and Fd Chemistry. 8(2). 120-129. Offor, C. E., Nwankwegu, N. J., Okechukwu, P. C. U. and Aja, P. M., 2015. The Effects of Ethanol Leaf-Extract of Pterocarpus santalinoides on Liver Enzymes of Albino Rats merican-Eurasian. J. Agric. and Environ. Sci. 15 (5). 920-922. Oke, O. L. 1966. Chemical studies on some Nigeria vegetables. Tropical Science. 8(3), 128-132. Oly-Alawuba, N. and Obiakor-Okeke, P. N., 2014. Antinutrient Profile of Three Mushroom Varieties Consumed in Amaifeke, Orlu, Imo State. Fd Sci. and Quality Management. 32 1-5. Omenna, E. C., Olanipekun, O. T. and Kolade, R. 2016. Effect of Boiling, Pressure Cooking And Germination on the Nutrient and Antinutrients Content of Cowpea (Vigna unguiculata). Fd Sci. and Nutri. Technol. 1(1). 1-7. Palermo, M., Pellegrini, N. and Fogliano, V., 2014. The effect of cooking on the phytochemical content of vegetables. J. of Sci. Fd and Agric. 94(6). 1057-1070. Papp, L. V., Lu, J., Holmgren, A., Khanna, K. K., 2007. From selenium to selenoproteins: Synthesis, identity, and their role in human health. Antioxidants and redox signaling. 9(7). 775–806. Prado, D.,1998. Pterocarpus santalinoides. The International Union for Conservation of Nature (IUCN) Red List of Threatened Species. International Union for Conservation of Nature. Reed, J. D., 2001. Effects of proanthocyanidins on the digestion and analysis of fibre in forages. J. of Range Management, 54, 466-473. Rienecke, K., 2017. Iodine Intake Requirements. Accessed 15/4/2018 from: https://www.livestrong.com/article/512567-iodine-intake-requirements/ Sango, C., Marufu, L. and Clemence Zimudzi, C., 2016. Phytochemical, Anti-nutrients and Toxicity Evaluation of Cleome gynandra and Solanum nigrum: Common Indigenous Vegetables in Zimbabwe. British Biotechnol. J. 13(3): 1-11. Sango, C., Marufu, L. and Zimudzi, C., 2016. Phytochemical, Anti-nutrients and Toxicity Evaluation of Cleome gynandra and Solanum nigrum: Common Indigenous Vegetables in Zimbabwe. British Biotechnol. J. 13(3): 1-11. Santhi, K. and Sengottuvel, R., 2016. Qualitative and Quantitative Phytochemical analysis of Moringa concanensis Nimmo. Int’l J. of Current Microbiol. and Appl. Sci. 5(1). 633-640. Santos, J., Mendiola, J. A., Oliveira, M. B. , Ibáñez, E., Herrero, M., 2012. Development of a HPLC-DAD- MS/MS method for simultaneous determination of fat- and water- soluble vitamins in green leafy vegetables. J of Chromatography. 1261. 179–188. Sasanka, S. D. and Gurumoorthi, P., 2011. Studies on effects of processing on oxalate content in agricultural produce (Colocasia esculenta, Prunus dulcis, glycine max). Internet J. of Fd Safety. 13, 270-274. Shahidi, F. and Naczk, M., 1992. An Overview of the Phenolics of Canola and Rapeseed: Chemical, Sensory and Nutritional Significance. J. of the American Oil Chemists' Society, 69(9). 917 – 924. Soetan, K. O. and Oyewole, O. E., 2009. The need for adequate processing to reduce the antinutritional factors in plants used as human foods and animal feeds: A review. African J. of Fd Sci., 3(9). 223-232. Song, J., Kwon, O. and Chen, S., 2002. Flavonoid inhibition of sodium-dependent vitamin C transporter 1 (SVCT1) and glucose transporter isoform 2 (GLUT2), intestinal transporters for vitamin C and glucose. J. of Biol. Chem. 277(18), 15252-15260. Udousoro, I. I., Akpan E. B., 2014. Changes in Anti- Nutrients Contents of Edible Vegetables under Varied Temperature and Heating Time. Current Res. in Nutri. and Fd Sci., 2(3). Umar, K. J., Hassan, L. G. and Ado, Y., 2007. Mineral Composition of Detarium microcarpum grown in Kwatarkwashi, Zamfara State, Nigeria. Int’l J. of Pure and Appl. Sci., 1(2). 43–48. Van Buren, J. P. and Robinson, W. B., 1981. Formation of complexes between protein and tannic acid. J. of Agric. Fd Chem. 17, 772-777. Zheng, Q. A., Li, H. Z., Zhang, Y. J. and Yang, C. R., 2004. Flavonoids from the resin of Dracaena cochinchinensis. Helvetica Chimica Acta, 87, 1167-1171.