Engineering & Technology
Publisher Name: IJRP
Views: 881 , Download: 587
Authors
# | Author Name |
---|---|
1 | Ibrahim Shuaibu Muhammad |
Abstract
Abstract
The growing interests in the use of lignocellulosic agricultural fibers as reinforcement in composite led to minimize the environmental problem associated with disposal of non-biodegradable composites. This research aims to evaluate and optimize a ceiling board composite from piliostigma thonningii particulate reinforced with styrofoam adhesive. Minitab 17 statistical software was used. The process was successfully modeled and optimized using a Box–Behnken design method with response surface methodology (RSM). The effects of three independent process variables (fibre/binder mixing ratio, pressure and temperature) were investigated, the coefficients of determination (R2 = 97.49 and 99.02%) is enough, which explained adequately for the model to be considered. Furthermore, the optimal conditions for the piliostigma thonningii board were found to be fibre/binder mixing ratio of 1:1w:w, pressure of 500kg/m2 and temperature of 91.73 oC which yielded response values of 9.0466 % water absorption and 0.106810 W/mK thermal conductivity. The optimum results gave a minimal error difference when validated. Hence the board has greater insulating properties and shows good potential to be used as ceiling board.