THE EFFECT LETHAL DOSAGE OF MORPHINE AND ARSINIC ON THE GROWTH OF LARVA CHRYSOMA.Sp RATE ON WHISTAR RAT IN MEDAN CITY Muhammad Fernando Manik, Agustinus Sitepu, Amri Amir Forensic and Medicolegal Spesialist Medical Education Program Medical Faculty of Universitas Sumatera Utara

Background: Lately, we often encounter many unnatural deaths, including: murder, rape, drug overdose, poisoning, or suicide. And sometimes unnatural deaths are largely undetected and only corpses are found left behind began to rot with many fly larvae all over their bodies. In this case the development of the fly's life cycle, which starts by laying eggs, then develops into larval instar I, II, III, prepupaee, pupae and become flies can be react with carcasses of rats that have been given morphine and arsenic.

Method: Observational research used 9 male Whistar rats aged 3-4 months with a weight of 200-300 grams divided by 3 (mice given morphine with lethal doses, arsenic given lethal doses and mice dislocated by cervical vertebrae). Before that flies were catch, there were 100 Chrysoma flies and they were put into 1 cage which was covered with gauze. Observation of death and recorded, then a 1 cm thin incision is made in the right abdomen and then it is placed in a cage filled with Chrysoma flies. The first observation is made after the sample is placed and recorded D0. Observations that are considered are changes in sample, egg or larvae of fly that inhabiting the sample.

Result: The development of the fly's life cycle in the administration of morphine and arsenic is faster than control. Eggs were faster found in the control than morphine and arsenic administration. Instar larvae are 3 times longer in morphine compared with arsenic and control but the Instar larvae cycle is 3 times faster.

Conclusion: Administered of morphine and arsenic is very influential on the development cycle of flies, growth in larval length is significantly higher. Administered of morphine and arsenic is very influential on the egg placement and the process of decaying rat carcasses longer.

Keywords: Time of Death, Larval Length

Introduction

Lately many unnatural deaths we often encounter, including: murder, rape, drug overdose, poisoning, or suicide. And sometimes unnatural deaths are largely undetected and found only left behind corpses that began to rot with many fly larvae all over his body¹.

Narcotics can accelerate or slow the growth of fly larvae and can disrupt the estimated time of death to 29 hours¹. Chemicals that can accelerate or slow the growth of fly larvae include Triazolam, Oxazepam, Alimemazine, Chloripriamine, Phenobarbital, Malathion, Mercury, Amitriptyline, Nortriptyline, Cocaine, Phenycyclidine, Heroin, and Morphine²¹.

Morphine is the most important opioid in the opium family which is found in more than 10 percent of opium¹. In addition to its powerful analgesic properties, morphine also has an influence on other central based nervous systems on suppression, sedatives, hypnosis, euphoria, suppression of respiratory reflexes and coughing. Morphine effects that stimulate the central nervous system include: miosis, excitation and convulsions. In some long-term morphine users, found symptoms of dependence, both physical and psychological.

In corpses that have long been decaying, it is very difficult to determine the time of death⁷. So one of the deciding examination of corpses that have rot can be used organisms that multiply on the corpse. One of the insect organisms or animals that are attracted to the stench of corpses is the fly. In the world of forensics, various ways can be done to determine the time of death of the body, among others by determining the age of fly larvae found in the body, as is done in the world of Forensic Entomology⁷. The stench that attract flies were produced by bacterial and enzymatic reactions in dead tissue (Dahlan 2007).

The fly will lay its eggs in certain locations such as moist and protected, (mouth hole, nose, vagina, anal and open wound).³ Not all flies put larvae eggs on the corpse, there is the development of flies by ovovivipar that is by hatching eggs in the body of the parent fly.

Research Purposes

General Purpose: To determine the effect of morphine and Arsenic lethal doses on rat carcasses from the growth of Chrysoma Sp larvae in Medan City.

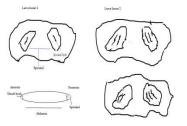
Spesial Purpose: To determine the lethal dose effect of morphine and arsenic on rat carcasses with the length of fly larvae in Medan City.

To find out the lethal dose effect of morphine and arsenic on rat carcasses with duration of fly growth in Medan City.

Literature Review

Death is the final phase in every human life. Death can be seen from two dimensions, namely somatic death and molecular death. Somatic death is death which is assessed from the cessation of the system of circulation, respiration and innervation, if one of the systems stop then the other system stops. Molecular death occurs after somatic death. After the death, the body will experience changes, including a decrease in body temperature,

bruising of the body, stiffness, and $decay^{6,7}$.


The stench produced by the decaying process of the body can attract nearby insects to come and breed around or on the body⁴. There have been many studies that have concluded that insects are associated with an estimated length of time of death (Hall, 1990)². The most studied insects are the flies of the family Calliphoridae, Sarcophagidae and Muscidae².

Determination of the time of death by entomology can use two methods. The first way is by utilizing the larval stage of the fly⁸. The stages of the larvae that are utilized are starting from the eggs of the instar larvae-I instar larvae-II instar larvae-III-prepupae-pupa-fly. Fly larvae will be found in moist and protected areas, such as the mouth, nose, anus and open wound.³. By utilizing the development time of larval stage as measured by larval length, an estimated time of death will be obtained. The second way is to pay attention to the type of adult fly around the corpse. By utilizing the behavior and arrival time of several different types of flies, it can be estimated the time of death⁸. However, both methods are greatly influenced by many factors such as the character of the type of fly, weather. climate (including temperature, light intensity and humidity), maggot mass temperature, geography, and drugs or toxins^{4,5}. So that the determination of the types of flies or fly larvae found in the body can also estimate the location of death.

The life cycle of flies namely eggs, larvae, pupae and adults. Several

types of larvae can be found on corpses that can be useful for forensic purposes ^{4,5}.

- Egg flies vary in shape and size ⁵. Flies usually lay their eggs in groups that can reach 40-200 eggs once laying eggs and with a size of 2mm⁸. Fly eggs will hatch into larvae after about 16-24 hours.
- Larvae don't have legs (legless larva/apodous).⁵ Larvae will experience skin peeling three times before finally migrating to become a pupa.

Besides size, the characteristic that can distinguish instar larvae 1, 2 and 3 is the shape of the spiracles. In the first instar larvae spiracle (spiracle slit) is newly formed, in the 2nd instar larvae have two spiracle slits, and the third larvae have three spiracle slit¹⁵.

Instar Larvae I: This stadium usually requires the least amount of time among other stadiums. In most fly larvae it takes 11-38 hours to complete this stage since the eggs hatch, with peak growth at 22-28 hours. Larvae length at this stage reaches approximately 5 mm or the size of grains of rice.

Instar Larvae II: takes 11-22 hours to become instar larvae III. The larvae form a colony

4

called "maggot mass" and cause the temperature around the larvae to rise slightly, called the maggot mass temperature.¹⁸ Larvae at this stage are approximately 10 mm and form posterior spiracles for respiration.

Instar Larvae III: This stadium is the longest stadium which is divided into two stages. The first stage the larvae continue to eat corpses for 20-96 hours, at this stage the larvae have four posterior spiracles and reach length of а approximately 17 mm. the second phase will last 80-112 hours. After the larvae stop eating, they will then move to a drier area to start the prepupaee stage. Larvae change color slightly reddish brown.

- Prepupae : It takes 1-2 days to become a pupa, with a size of 8-9mm.
- Pupae: it takes about 10 days in the puparium, for transformation from larvae to adult flies. The general size is approximately 12 mm. The pupa stage can survive in hot, cold or flood with conditions of the above size.
- Adult: After some time, the larvae that have changed into adult fly forms will come out of the pupae and can start their life cycle again by laying

Type of Research

This research is a descriptive observational study with a prospective research design. Variables are measured at the same time as the research takes place. This research is using primary data to determine the duration and length of fly larvae in whistar rat carcasses. This research was conducted at USU Hospital Forensic Installation.

Method

- Using 9 male Whistar rats aged 3-4 months with a weight of 200-300 grams divided by 3 (mice given morphine lethal doses, arsenic given lethal doses and rats that were dislocated neck bones).
- Previously caught as many as 100 flies Chrysoma flies and put in 1 cage covered with gauze.
- 3 mice were given morphine at lethal doses at a dose of 461mg/kg = 92.2 mg. Morphine is done by injecting the stomach with a dose of 100 mg recorded each treatment. And marked with black markers line one, put into 3 containers.
- 3 rats were given arsenic in lethal doses at a dose of 20 mg / kg = 4 mg. Arsenic is done with a mouth and mouth recorded every treatment. And marked with

Table II Larvae Length Growth Every Day and Larvae Photo on Rat 1

5

black markers line two, placed in 3 containers.

- 3 rats were done by breaking the cervical vertebrae recorded for each treatment. Without the line put into 3 containers.
- The death is observed and recorded.
- After all die, then make a 1 cm thin incision in the right abdomen and then put into a cage that has been filled with Chrysoma flies.
- The first observation is made after the sample is placed and recorded D0.
- Observations that are considered are changes in sample, egg or fly larvae that inhabit the sample.
- If there are eggs or larvae already, the sample is transferred to a cage covered with wire nets without flies. Then record the time, the length of each change. After becoming a pupa, it is moved to a container and closed which has been perforated on it.

Method	Time Administered	Time of Death	Picture
Lethal dose morphin	29-10-2019 08.40 Western Indonesia Time	29-10-2019 10.20 Western Indonesia Time	
Lethal dose Arsenic	29-10-2019 08.50 Western Indonesia Time	29-10-2019 09.10 Western Indonesia Time	
Control	e .	29-10-2019 10.25 Western Indonesia Time	

Table I. Time of Treatment

DAY	OBSERVATION	SIZE	PHOTO
D0	Clear white eggs were found at 17.00 Western Indonesia Time	0,6 mm	
D1	Clear white Instar Larvae- l was found	3,1 mm	
D2	White Instar Larvae-2 actively moving	5,3 mm	
D3	Grayish Instar Larvae-3 was found	8,9 mm	
D4	White-brown Instar Larvae-3 was found	13,8 mm	

D5	Blackish Instar Larvae-3 was found not active	14,9 mm	j
D6	Brownish prepuppae was found	13,5 mm	
D7	St	ill same with I	D6
D8	Brown blackish pupae was found	7 mm	
D9	St	ill same with I	08
D10	St	ill same with I	09
D11	Sti	ll same with D	010
D12	Fly Crysoma Sp was found		

		al dislocated)				
DAY	OBSERVATION	SIZE	РНОТО			
D0	Eggs were found at 17.10 Western Indonesia Time	0,65 mm	8			
D1	Clear white Instar Larvae- 1 was found	4 mm				
D2	White Instar Larvae-2 actively moving	5,8 mm				
D3	Grayish Instar Larvae-3 actively moving	7,0 mm				
D4	White blackish Instar Larvae-3 was found not active		J			
D5	Blackish Instar Larvae-3 was found not active	14,9 mm	j.			
Dó	Brownish prepuppae was found	13,5 mm				
D7	St	ill same with	Hő			
D8	Brown blackish pupae was found	12 mm)			
D9	St	ill same with	H8			
D10	Still same with H9					
D11	Still same with H10					
D12	Fly Crysoma Sp was found					

	ODCEDUATION	CTTL	DITOTO
DAY	OBSERVATION	SIZE	PHOTO
H0	Clear white oval eggs were found at 17.20 Western Indonesia Time	0,7 mm	
н	Clear white Instar Larvae-	3,8 mm	and the second second
	l was found	5,5 100	
H2	ClearWhite Instar Larvae- 2 actively moving	5,5 mm	
нз	White Instar Larvae-2 actively moving	6,0 mm	
H4	White Instar Larvae-3 actively moving	16,3 mm	2
D5	White brownish Instar Larvae-2 not active	15,3 mm	1
D6	Brownish prepuppae was found	13,5 mm	
D7	S	till same with	1 D6
DS	Brown blackish pupae was found	12,1 mm	0
D9	s	till same with	DS
D10	s	till same with	n D9
D11	S	till same with	D10
D12	Fly Crysoma Sp was found		

Table V Fly Cycle Development on Whistar Rat Carcasses with Cervical Dislocation

			Dislocation			
No	Devel	opment	Lenght	Fly	Long	Mean
				Cycle	Cycle	
1	Egg	Rat 1	0,6mm	D0	l Day	0,65mm
		Rat 2	0,65mm	D0	l Day	l Day
		Rat 3	0,7mm	D0	l Day	1
2	Instar	Rat 1	3,1 mm	Dl	l Day	3,6mm
	Larvae 3	Rat 2	4mm	Dl	l Day	l Day
		Rat 3	3,8mm	D0	l Day	1
3	Instar	Rat 1	5,3mm	D2	l Day	5,6mm
	Larvae 3	Rat 2	5,8mm	D2	l Day	l Day
		Rat 3	5,75mm	D2	2 Days	1
4	Instar	Rat 1	12,5mm-	D3	3 Days	13,5mm
	Larvae 3	Rat 2	12,3mm	D3	3 Days	3 Days
		Rat 3	15,8mm	D4	2 Days	1
5	Prepuppae	Rat 1	13,5mm	D6	2 Days	13,5mm
		Rat 2	13,5mm	D6	2 Days	2 Days
		Rat 3	13,5mm	D6	2 Days	1
6	Puppae	Rat 1	7mm	D8	4 Days	10,4mm
		Rat 2	12mm	D8	4 Days	4 Days
		Rat 3	12,1mm	D8	4 Days	1
		Rat 1	-	D12	-	-
7	Fly	Rat 2	-	D12	-	1
		Rat 3	-	D12	-	1
8		Fly o	levelopmen	t		12 Days

Table III Larvae Length Growth Every Day and Larvae Photo on Rat 2 (Cervical dislocated)

Table IV Larvae Length Growth Every Day and Larvae Photo on Rat 2

DAY	(Lethal D OBSERVATION	ose Morphin SIZE	e) PHOTO
DAY	There were no eggs	SIZE	PHOTO
D0		-	-
19462-0110	Clear white egg was found	0,6mm	H
D2	Clear Instar Larvae 1 was found	3,8 mm	封津
D3	White Instar Larvae 2 was actively moving	4,7 mm	
D4	White Instar Larvae 2 was actively moving	8,8 mm	
D5	White brownish Instar	16,2 mm	
	Larvae 3 was less actively moving		
D6	Brown darkish prepupae was found	10 mm	
D7	Brownish pupse were found	12,3mm	0
D8	S	till same with	D7
D9	Fly Crysoma Sp was found		
		ose Morphine	2)
DAY	OBSERVATION	SIZE	РНОТО
D0	There were no eggs	1 3 4 7 - 3	24 24
D1	Clear white egg was found	0,5mm	H
D2	Clea whiter Instar Larvae 1 was found	4 mm	

Bright white Instar Larvae 2 was actively moving

White brownish Instar Larvae 2 was actively moving

6,2 mm

9,9 mm

THE

T

D3

D4

Table VI Larvae Length Growth Every Day and Larvae Photo on Rat 4

D5	White brownish Instar Larvae 3 was actively moving	18,2 mm	
D6	Brown darkish prepupae was found	11 mm	
D7	Brownish pupae were found	12,2mm	0
D8	St	ill same with I	D7
D9	St	ill same with l	D8
D10	Fly Crysoma Sp was found		-
able 1	VIII Larvae Length Growth	Every Day a	nd Larvae Photo on Rat

		ose Morphine	
DAY	OBSERVATION	SIZE	РНОТО
D0	There were no eggs	(648)	1240
D1	Clear whiter Instar Larvae 1 was found	4,2mm	
D2	White Instar Larvae 2 was actively moving	5,5mm	
D3	White Instar Larvae 3 was actively moving	9,3 mm	
D4	White brownish Instar Larvae 3 was actively moving	16,2 mm	
	1		
D5	White brownish Instar Larvae 3 was actively moving	16,8 mm	Q
D6	Brown darkish prepupae was found	11 mm	
D7	Brownish pupse were found	7.5mm	0
D8	St	ill same with	D7
D9	St	ill same with	D8
D10	Fly Crysoma Sp was found		-

Table IX Fly Cycle Development on Whistar Rat Carcasses with Lethal Dose	
Morphine	1

	Morpaine							
No	Devel	opment	Lenght	Fly	Long	Mean		
				Cycle	Cycle			
1	Eggs	Rat 4	0,6mm	Dl	l Day	0,55mm		
		Rat 5	0,5mm	Dl	1 Day	l Day		
		Rat 6	-	-	-	1		
2	Instar	Rat 4	3,8 mm	D2	1 Day	4mm		
	Larvae 1	Rat 5	4mm	D2	1 Day	l Day		
		Rat 6	4,2mm	Dl	1 Day	1		
3	Instar	Rat 4	6,8mm	D3	2 Days	6,9mm		
	Larvae 2	Rat 5	8,5mm	D3	2 Days	2 Days		
		Rat 6	5,5mm	D2	1 Day	1		
4	Instar	Rat 4	16,2mm-	D5	1 Day	16,1mm		
	Larvae 1	Rat 5	18,2mm	D5	l Day	2 Days		
		Rat 6	14,1mm	D3	3 Days			
5	Prepuppae	Rat 4	10mm	D6	1 Day	10,7mm		
		Rat 5	llmm	D6	1 Day	l Day		
		Rat 6	11mm	D6	1 Day	1		
6	Puppae	Rat 4	12,3mm	D7	2 Days	10,7mm		
		Rat 5	12,2mm	D7	3 Days	3 Days		
		Rat 6	7,5mm	D7	3 Days	1		
		Rat 4	-	D9	-	-		
7	Fly	Rat 5	-	D10	-	1		
		Rat 6	-	D10	-	1		
8		Fly I	Developmen	t		10 Days		

Table X Larvae Length Growth Every Day and Larvae Photo on Rat 7 (Lethal Dove Arvine)

)ose Arsine)	
DAY	OBSERVATION	SIZE	PHOTO
D0	There were no eggs	(* 2	8
Dl	Clear whiter Instar Larvae 1 was found	0,6mm	#
D2	Clear whiter Instar Larvae 1 was actively moving	3,1 mm	
D3	White Instar Larvae 2 was very actively moving 3	6,3 mm	
D4	White Instar Larvae 3 was actively moving	8,1 mm	
D5	White brownish Instar larvae 3 was actively moving	8 mm	
D6	White brownish Instar larvae 3 was less actively moving	14 mm	

D7	Brown darkish prepupae was found	11mm	
D8	Brownish pupae were found	12,3mm	l
D9	St	ill same with	D8
D10	St	ill same with	D9
D11	Fly Crysoma Sp was found		

Table XI Larvae Length	Growth Eve	ry Day and	l Larvae Photo on Rat 8

DAY	OBSERVASION	Dose Arsine) SIZE	РНОТО	
	OBSERVASION	SIZE	РНОТО	
D0	There were no eggs		19 <u>2</u> 9	
D1	Clear white eggs were found	0,7mm		
D2	Clear whiter Instar Larvae 1 was actively moving	3,3 mm		
D3	White Instar Larvae 2 was actively moving	5,1 mm		
D4	White brownish Instar larvae 2 was very actively moving	10 mm		
D5	White brownish Instar larvae 3 was very actively moving	13 mm)	
D6	Brown darkish prepupae was found	ll mm		
D7	Brownish pupse were found	llmm		
DS		111 3.97% W***	107	
D0	Still same with D7 Still same with D8			
		ud same with	1 100	
D10	Fly Crysoma Sp was found			

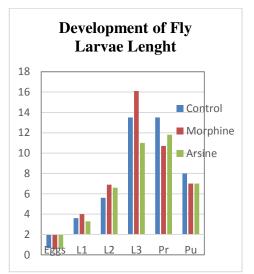
DAY	OBSERVATION	SIZE	PHOTO
DO	There were no eggs	20 C	10-07-07-07-07-07-07-07-07-07-07-07-07-07
D1	Clear white eggs were found	0,61mm	E
D2	Clear whiter Instar Larvae	3,4mm	
	1 was FOUND		
D3	White Instar Larvae 2 was	6 mm	
	actively moving		
D4	White Instar larvae 3 was	8 mm	
	very actively moving		
D5	White Instar larvae 3 was	12,3 mm	
	very actively moving		-
D6	Brown darkish prepupae was found	ll mm	
D7	Brownish pupae were found	12,1mm	
D8	Si	ill same with	D7
D9	SI	ill same with	n D8
D10	Fly Crysoma Sp was found		

Table XII Larvae Length Growth Every Day and Larvae Photo on Rat 9 (Lethal Doce Arvine)

Table XIII Fly Cycle Development on Whistar Rat Carcasses with Lethal Dose Arsine

	Dose Arsine						
No	Development		Lenght	Fly	Long	Mean	
				Cycle	Cycle		
1	Eggs	Rat 7	0,6mm	Dl	l Day	0,6mm	
		Rat 8	0,7mm	Dl	l Day	l Day	
		Rat 9	0,6mm	Dl	l Day	1	
2	Instar	Rat 7	3,1 mm	D2	l Day	3,3mm	
	Larvae 1	Rat 8	3,3mm	D2	l Day	l Day	
		Rat 9	3,4mm	D2	l Day	1	
3	Instar	Rat 7	6,3mm	D3	l Day	6,6mm	
	Larvae 2	Rat 8	7,5mm	D3	2 Days	l Day	
		Rat 9	6mm	D3	l Day	1	
4	Instar	Rat 7	10mm	D4	3 Days	llmm	
	Larvae 1 3	Rat 8	13mm	D5	l Day	2 Days	
		Rat 9	10,1mm	D4	2 Days	1	
5	Prepuppae	Rat 7	llmm	D7	l Day	llmm	
		Rat 8	llmm	D6	l Day	l Day	
		Rat 9	llmm	D6	l Day	1	
6	Puppae	Rat 7	12,3mm	D8	3 Days	11,8mm	
		Rat 8	llmm	D 7	2 Days	2 Days	
		Rat 9	12,1mm	D 7	2 Days	1	
		Rat 7	-	D11	-	-	
7	Fly	Rat 8	-	D10	-	1	
		Rat 9	-	D10	-	1	
8	Fly Development					10 Days	

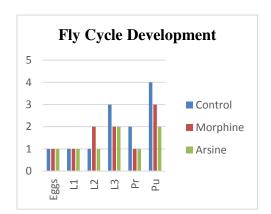
Table XIV Fly Cycle Development on Whistar Rat Carcasses with Death cause of Cervical Dislocation, Lethal Dose Morphine, and Lethal Dose Arsine


on Medan City						
No	Dev	Lenght	Fly	Long Cycle		
				Cycle		
1	Eggs	Cervical Dislocation	0,65mm	D0	1 Day	
		Morphine	0,55mm	D1	l Day	
		Arsine	0,6mm	Dl	l Day	
2	Instar Larvae	Cervical Dislocation	3,6mm	Dl	1 Day	
	1	Morphine	4mm	D2	l Day	
		Arsine	3,3mm	D2	l Day	
3	Instar Larvae	Cervical Dislocation	5,6mm	D2	l Day	
	2	Morphine	6,9mm	D3	2 Days	
		Arsine	6,6mm	D3	1 Day	
4	Instar Larvae	Cervical Dislocation	13,5mm	D3	3 Days	
	3	Morphine	16,1mm	D5	2 Days	
		Arsine	llmm	D4	2 Days	
5	Prepuppae	Cervical Dislocation	13,5mm	D6	2 Days	
		Morphine	10,7mm	D6	l Day	
		Arsine	llmm	D6	l Day	
6	Puppae	Cervical Dislocation	10,4mm	D8	4 Days	
		Morphine		D 7	3 Days	
		Arsine		D 7	2 Days	
		Cervical Dislocation	-	D12	12 Days	
7	Fly	Morphine	-	D10	10 Days	
	Development	Arsen	-	D10	10 Days	

Flies eggs in the treatment of arsenic and morphine rat carcasses were found after H + 1 observations while in control rat carcasses were found in H0. This is because:

- The influence of administering chemicals (arsenic and morphine) with lethal doses contained in the rat carcass meat reduced the attraction of flies to lay their eggs compared to the rat carcasses in the control treatment.
- Giving this chemical, also has an influence in the form of toxic effects on some flies that descend the carcass of mice, especially in this treatment. This causes a reduction in the population of flies in the cage.
- Flies that lay eggs in H + 1 on morphine and arsenic rat carcasses are possible laying media that are only available in the cage only the corpse of the rat because the control carcass has been moved to another cage.
- Anaerobic bacteria that are in the digestive tract of rat's experience poisoning due to the toxic effects of these chemicals. Rahman et al.. (2004)mentioned that arsenic has a high toxicity effect against bacteria, fungi and insects. This is related to the process of decomposition that occurs. where insect interest arises because of the presence of ammonia compounds produced by anaerobic bacteria.
- The decomposition process of the corpse also influences the succession of insects besides environmental factors. In the

bloating phase where the gases in the body resulting from the catabolism of organic substrate by inorganic bacteria begin to fill the cavities of organs in the corpse, this spurs the decay process faster. Ammonia gas that is starting to emerge from the body attracts many insects around it (Greenberg, 2014).


- The gas produced by the anaerobic bacterial metabolic activity causes distension in the stomach of the corpse. Furthermore, the internal temperature rises during this stage as a result of the activity of spoilage bacteria and the metabolic activity of the fly larvae. Flies from the family Calliphoridae are very interested in corpses during this stage (Gof., 2000., Gennard. 2012)
- Besides this, when viewed from the readiness of flies to lay eggs from the flies provided are also different, where there may be flies that are ready to lay eggs and who are not ready to lay eggs on the media of dead rats.

The results showed that there was an influence of morphine and arsenic in rat carcasses affecting the average maximum length of Chrysomya sp. On observation on the day of H0, each treatment showed that the instar larvae I Chrysomya sp had a length that was not too different.

This is presumably because the first instar larvae hatched and only ate a little meat. Based on observations of control larvae length, in morphine and arsenic can be seen that the treatment with morphine rat carcasses tends to show the highest larval length compared to other treatments.

Larvae on morphine rat carcasses that have a longer size than other treatments may also be caused by the disruption of juvenile hormonal activity in larva metamorphosis after eating rat meat containing morphine. Bower (1971), states that the metamorphosis stage is a sensitive and complex period, in which the influence of the juvenile hormone exerts effects such as the formation of longer larvae. Juvenile hormones in insect function to suppress adult characteristics by maintaining the structure of larvae (Hadi et al., 2009)

From the results of observations on the duration of the development of flies, it can be seen that each treatment has a different duration of stage achievement. In the egg phase, it can be seen that all treatments require the same time from the eggs reaching instar I, which is 1 (one) day. The same thing is in the first instar stage to second instar, which still requires the same time for all treatments that is 1 (one) day. Instar I metamorphosis to instar II begins to show a difference in duration, where in the morphine treatment takes two days while in the arsenic control treatment one day. Furthermore, at the instar stage three control larvae had 3 days, morphine carcass rat larvae and arsenic 2 days.

The total duration required from eggs to adulthood in control rat carcasses is 12 days while in morphine and arsenic rat carcasses is 10 days. The effect of morphine and arsenic is thought to accelerate the attainment of the larval stage of the where morphine acts like fly, acetylcholine. Morphine has а specific effect on the central nervous system. The system has controls, including the hormone ecdyson and the juvenile hormone.

Ecdyson and juvenile hormone titers influence metamorphosis. In the process of larvae to molt larvae. The second titre of this hormone is high. Whereas the metamorphosis process occurs when the ecdison hormone is high and juvenile is low (Ware GW and Whitcare, 2004).

In this study, measurements of temperature, humidity and height of rainfall were not carried out and looked at the life cycle types of flies based on species of flies that landed. So that the next research should be carried out specifically in terms of the factors in the cycle.

Conclusion

Based on the results of the above research and the discussion above, the following conclusions can be drawn:

- The administration of morphine and arsenic is very influential on the fly's development cycle which is faster than the control.
- The administration of morphine and arsenic influences the growth of larval length significantly higher than larval growth in growth media not exposed to lethal doses of morphine.
- The administration of morphine and arsenic affects the time of laying eggs longer.
- The administration of morphine and arsenic is very influential in the process of rat decay

Reference

- 1. Dahlan S,(2007). Ilmu Kedokteran Forensik: Pedoman bagi dokter dan penegak hukum. Semarang: Badan Penerbit Universitas Diponegoro : 47–65
- 2. Wells JD, (2001).Lamotte LR, Estimating the postmortem interval. In: forensic entomology : the utility of arthropods in legal investigations. New York : CRC Press, : 263–81
- Budiyanto A, Widiatmaka W, Sudiono S, Winardi T, Mun'im A, Sidhi, dkk.(1997) Ilmu Kedokteran Forensik. Jakarta

:Bagian Kedokteran Fakultas Kedokteran Universitas Indonesia : 25–36.

- Byrd JH, Castner, (2001) JL. Insects of forensic Importance. In: Forensic entomology : the utility arthropods in legal investigations. New York : CRC Press : 43–75.
- David BV, Ananthakrishnan TN,(2004) General and applied entomology, 2nded. New delhi : tataMcGraw – Hill, : 555–96
- Aflanie Iwan, Nirmalasari Nila, Arizal H Muhamad,(2017), Ilmu Kedokteran Forensik, Edisi Satu, PT Raja Grafindo Persada, Jakarta, hal 137–147
- 7. Amir Amri.(2005)Rangkaian Ilmu Kedokteran Forensik. Bagian Ilmu Kedokteran Forensik Dan Medikolegal Fakultas Kedokteran Universitas Sumatera Utara. Ramadhan, Medan, hal 46-70, 226-229
- 8. Supriastuti, Hoejodo.(1992,Januari) Peran larva lalat pada ayat dalam menunjang penentuan saat

menunjang penentuan saat kematian. Majalah Parasitologi Indonesia.; 5(1):35 - 46

- 9. Umar D, Algozi AM.(2004,Juni) Penentuan umur larva berdasarkan panjang larva lalat dalam memperkirakan saat kematian. Majalah Kedokteran Forensik Indonesia; 10(1);81 – 6
- 10. Hall RD(2001).Introduction : Perceptions and Status of forensic entomology. In : Forensic Entomology : the utility of arthropods in legal investigation. New York : CRC press: 1–11

- Rusidi Anwar Rusidi.(2016). Gambaran Panjang Larva dan Genus Lalat Pada Bangkai Tikus Wistar Dengan Perbedaan Letak Geografis Di Bali. Skripsi
- 12. SinagaSukri Sinaga.(2014). Keragaman Lalat Diptera Pada Bangkai Kelinci Di dalam Ruangan. Skripsi
- Mayasari Dian AA.(2008).Hubungan Panjang Larva Lalat Dengan Lama Waktu Kematian Tikus Wistar Yang Didislokasi Tulang Leher Di Semarang. Skripsi.
- 14. Isfandiari Bayu Adelia. (2009). Perbedaan Genus Larva LalatTikus Wistar Mati Pada dataran Tinggi Dan Rendah Di Semarang. Skripsi
- 15. JunithaKetut I, Watiniasih Luh Ni, Laksmita Saka Ayu.(2015). Identifikasi Larva Sarcophagidae (Genus Sarcophaga) Pada Bangkai Mencit (Musmusculus) Di Hutan Mangrove. Jurnal Biologi, Vol. 19. No. 2 Desember 2015.
- 16. Andiarsa Dicky, Setia ningsih Ika, Fadilly Abdullah, Hidayat Syarif, Hairani Budi,(2015),Gambaran Bakteriologis Lalat dan Cullicidae di Lingkungan Balai Litbang P2B2 Tanah Bumbu, Vol 9, No 2, 37-44
- 17. SidhartaBambang, AswinDjoko
 B, FaizalDicky(2011Agustus).
 Paparan Morfin Dosis Letal
 Pada Bangkai Tikus Terhadap
 Pertumbuhan Larva Sarcophaga
 Sp.Jurnal Kedokteran
 Brawijaya. Vol. 26, No. 4

- 18. Omar Baharudin, Azil Hani Aishah, Abdullah, Marwi Abdullah Mohammed, Firdaus Ahmad,(2014). Pengaruh Suhu Terhadap Perkembangan Lalat Berkepentingan Forensik Chrysoma villeneuvi Patton (Diptera : Calliphoridae). Sainsmalaysiana, 43 (10) : 15372 – 1542.
- 19. Hadi Kusumawati Upik, HidayatiRini, Ihsan Miftahul, (2016 Juli). Pengaruh suhu Udara Terhadap Fekunditas Dan Perkembangan Pra dewasa Lalat Rumah (Musca Domestica).Jurnal Teknologi Lingkungan, Vol. 17, No. 2