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Abstract 

In many high-dimensional applications, it is of interest to test whether the mean vectors of two populations are 

equal. However, the presence of unknown and unequal block diagonal covariance matrices can complicate the testing 

procedure, and choosing an appropriate test becomes challenging. The study aimed to investigate the performance of tests 

for equality of two high-dimensional mean vectors with unknown and unequal block diagonal covariance matrices. The 

study focused on three tests: T1 proposed by Srivastava, Katayama, and Kano (2013), T2 proposed by Hu, Bai, Wang, and 

Wang (2017), and T3 proposed by Ahmad (2019). The study included both cases: equal and unequal sample sizes. The effect 

of block size in the covariance matrix on the performance of the tests was also studied. The data was gathered using two 

independent high-dimensional samples based on multivariate normality and unequal covariance matrices with block 

diagonal structure. The number of variables studied ranged from 50 - 500 and the sample size was 20 - 200. The results 

showed that, for equal sample sizes, both of the tests T1 and T2 performed well, and when the sample size exceeds 20, the 

test T1 performed slightly higher than T2. When two sample sizes were unequal, the test T2 outperformed the tests T1 and T3. 

A study of the effect of block size discovered that larger block sizes resulted in poor test performance and the influence of 

block size diminishes as sample size increases. 

 
Keywords: High-dimensional mean vectors; Unequal covariance matrices; Block diagonal covariances; Covariance matrix block size; 
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1. Introduction 

In recent years, rapid advancements in measurement technology, data storage, and processing have resulted 

in the proliferation of big datasets. These datasets play a crucial role in the efficient operation of numerous 

organizations in various domains and have important implications for research and the quality of human life 

(Laney, 2001). To draw reliable conclusions and reduce risks associated with decision-making, statistical 

methods for analyzing big data are vital. For example, predicting drug effectiveness in personalized medicine 

based on the DNA data of individual patients requires statistical analysis (Datta et al., 2018). 

High-dimensional data, which are characterized by a large number of variables of interest and a small sample 

size, are increasingly being collected in various fields, including medicine, genetics, and economics (Fan & Lv, 
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2010). However, analyzing such data is complex and presents unique challenges. Existing multivariate data 

analysis methods, such as the comparison of mean vectors through Hotelling's T2 test (Hotelling, 1931), are not 

applicable to high-dimensional data due to the curse of dimensionality and increased false positives (Pandit et 

al., 2020). 

Equivalence testing of two high-dimensional population mean vectors typically relies on a multivariate 

distribution, and the structure of the common variance matrix can affect the performance of tests (Fan et al., 

2020). Specifically, when the covariance matrix has a block diagonal structure, the block size can impact the 

performance of tests by introducing spurious correlations and inflating test statistics (Barnett & Onofrei, 2018). 

However, there is currently limited research on mean vector testing in this context, which can result in users 

choosing inappropriate methods and ultimately yielding unreliable conclusions (Shi et al., 2019). 

To address these limitations, this research aims to study the performance of two tests for comparing mean 

vectors when the covariance matrices are unequal and possess block diagonal structures, as well as examining 

the impact of block size on the tests. The research will be conducted on two independent and randomly selected 

samples from a multivariate normally distributed population with an unequal and unknown covariance matrix 

and a block diagonal covariance structure. 

2. Tests for Two High-Dimensional Mean Vectors with Unequal Covariance Matrices 

2.1 Chen and Qin’s Test 

When comparing the mean vectors of two populations with unequal and unknown covariance matrices 

(𝚺1 ≠ 𝚺2), Chen and Qin (2010) proposed an important testing method. This method builds upon the work of 

Bai and Saranadasa (1996), who developed a method for the case where the covariance matrices of both 

populations are assumed to be equal in a high-dimensional setting. Chen and Qin extended this method to handle 

the case of unequal covariance matrices. 

For testing the hypotheses 𝐻: 𝛍1 = 𝛍2  against 𝐾: 𝛍1 ≠ 𝛍2 , the test proposed by Chen and Qin (2010), 

denoted by 𝑇𝐶𝑄, is defined as follows: 
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The test using the 𝑇𝐶𝑄 statistic will reject the null hypothesis at a significance level of 𝛼 when the value of          𝑇𝐶𝑄 > 𝑍1−𝛼 , where 𝑍1−𝛼 is the 100(1 − 𝛼)% quantile of the standard normal distribution.  

The assumptions of  𝑇𝐶𝑄  are    
(1) 𝑛1/(𝑛1 + 𝑛1) → 𝑘 ∈ (0,1) , where 𝑛 → ∞ 

(2) (𝝁1 − 𝝁2)′𝚺𝒊(𝝁1 − 𝝁2) = 𝑜(𝑛−1𝑡𝑟{(𝚺𝟏 + 𝚺𝟐)2}), 𝑖 = 1,2 

The test proposed by Chen and Qin (2010) is known to be invariant under orthogonal transformation. However, 
it is not invariant under scalar transformation, and the calculation to obtain the test statistic can be quite complex. 

2.2 Modified Chen and Qin’ s Test 

Although the 𝑇𝐶𝑄 test proposed by Chen and Qin (2010) is more widely applicable than the test of Bai and 
Saranadasa (1996) because it does not require the same covariance matrices for both populations, the estimator 𝜎̂𝐶𝑄2   in (3) is still not very efficient. To improve the performance of the test, Srivastava et al. (2013) suggested 
using the UMVUE (Uniformly Minimum Variance Unbiased Estimator) under the normal distribution of  𝑡𝑟(𝛴𝑖2) ∕ 𝑝 instead of the estimator 𝜎̂𝐶𝑄2  used in (3). The estimator proposed by Srivastava et al. (2013), denoted 
by 𝜎̂𝑈2, is as follows: 
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The test proposed by Srivastava et al. (2013) modifies the estimator of the covariance matrix in the test 
statistic of Chen and Qin (2010) to improve its performance. The modified test statistic, denoted by 𝑇𝑀𝐶𝑄 , is 
defined as follows: 
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The test using the 𝑇𝑀𝐶𝑄 statistic will reject the null hypothesis at a significance level of 𝛼 when the value of          𝑇𝑀𝐶𝑄 > 𝑍1−𝛼 , where 𝑍1−𝛼 is the 100(1 − 𝛼)% quantile of the standard normal distribution.  

While the 𝑇𝑀𝐶𝑄 test has fewer initial assumptions compared to the Bai and Saranadasa (1996) test, it 
is only invariant under orthogonal transformations and not invariant under scalar transformations, which can be 
a limitation. Additionally, the calculation to obtain the test statistic can be quite complex. 

 

2.3 Srivastava, Katayama and Kano’s Test 

One important testing method proposed by Srivastava et al. (2013) is the 𝑇1 test, which has the property of 
being invariant under scalar transformation. The  𝑇1 test statistic is as follows: 
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The test using the 𝑇1  statistic will reject the null hypothesis at a significance level of 𝛼 when the value of          𝑇1 > 𝑍1−𝛼 , where 𝑍1−𝛼 is the 100(1 − 𝛼)% quantile of the standard normal distribution.  

The assumptions of  𝑇1 are    
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The important advantage that both 𝑇1  and 𝑇𝑀𝐶𝑄  tests have in common is that they do not rely on any 
assumptions about the distribution of the population, meaning that they can be applied to non-normally 
distributed data. 

2.4 Hu et al.’s Test 

Hu et al. (2017) developed a test that extends the work of Chen and Qin (2010) for testing mean vectors in a 
single population, two populations, and three or more populations. This method does not assume normality of 
the data, and for the case of two populations, it uses the same test statistic as proposed by Chen and Qin (2010). 
However, the method for calculating the mean and variance of the test statistic is simpler than that used by Chen 
and Qin. 

 

The 𝑇2 test statistic proposed by Hu et al. (2017) is as follows: 
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The test using the 𝑇2  statistic will reject the null hypothesis at a significance level of 𝛼 when the value of          𝑇2 > 𝑍1−𝛼 , where 𝑍1−𝛼 is the 100(1 − 𝛼)% quantile of the standard normal distribution.  

The assumptions of  𝑇2 are    
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2.5 Ahmad’s Test 

Ahmad (2019) proposed an interesting test that does not rely on assumptions about the distribution of data. 
This method is based on the development of a test statistic that differs from previously mentioned methods. 
According to Ahmad (2019), the proposed test statistic relies on fewer initial assumptions than other tests. 
Additionally, Ahmad (2019) provided a method for testing the mean vector in cases where there are more than 
two populations. 

 

The 𝑇3 test statistic proposed by Ahmad (2019) is as follows: 
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The test using the 𝑇3  statistic will reject the null hypothesis at a significance level of 𝛼 when the value of          𝑇3 > 𝑍1−𝛼 , where 𝑍1−𝛼 is the 100(1 − 𝛼)% quantile of the standard normal distribution.  

The assumptions of  𝑇3 are    

(1) 4( ) , 1,..., , 1,2,iks isE X s p i   +=    = =   
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The comparison of mean vectors between two high-dimensional populations with unequal covariance 
matrices has been addressed by various methods. For instance, Sukcharoen and Chongcharoen (2019) proposed 
a test suitable for cases with block diagonal covariance matrices, while Thonghnunui et al. (2020) presented a 
method assuming knowledge of the covariance matrix for one population and an unknown covariance matrix 
for the other. These approaches are rooted in the work of Jiamwattanapong and Chongcharoen (2015, 2017). 

Despite their relevance, these tests rely on specific assumptions about the data distribution and can pose 
implementation challenges. Consequently, they were not considered in the present study. Instead, this research 
focuses on evaluating the performance of three alternative tests proposed by Srivastava et al. (2013), Hu et al. 
(2017), and Ahmad (2019). These tests are designed to compare high-dimensional mean vectors of two 
populations with unequal and block diagonal covariance matrices, addressing a gap in previous literature. 
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3. Simulation Procedure 

A simulation procedure was conducted to evaluate the performance of three tests for the equality of 
population mean vectors, namely the 𝑇1 test proposed by Srivastava et al. (2013), the  𝑇2 test proposed by Hu 
et al. (2017), and the 𝑇3  test proposed by Ahmad (2019). The sample data were drawn from the normal 
population with mean vector and block diagonal covariance matrix. The covariance matrices of both populations 
were set to be unequal but they shared the same covariance structure. 

3.1 Data Simulation 

This study utilized R version 4.2.0 to simulate data under the main and alternative assumptions. The study 
is divided into two parts. Part 1 examines the performance of the test under multivariate normal distribution 
with a block diagonal structure for both equal and unequal sample sizes, when the two populations have unequal 
covariance matrices. Part 2 investigates the impact of the block size on the efficiency of the test for multivariate 
normal distribution with a common covariance matrix. 

Part 1: Study and Comparison of Three Tests  

The study relied on data simulation under multivariate normal distribution. The first random sample, denoted 

as 𝑥11, 𝑥12, … , 𝑥1𝑛1 , was generated from a p-dimensional normal distribution 𝑁𝑝(𝛍1, 𝚺1), while the second 

independent sample, denoted as 𝑥21, 𝑥22, … , 𝑥2𝑛2  , was generated from 𝑁𝑝(𝛍2, 𝚺2), where 𝑝 > 𝑛; 𝑛 = 𝑛1 +𝑛2 − 2, with 𝑛1 = 𝑛2 . 

Under the null hypothesis, the mean vectors of both populations were set to be equal (𝛍1 = 𝛍2 = 𝟎), while 
the covariance matrices of the two populations had different values but shared the same block-diagonal structure 
as follows:  

1/2 1/2
1 1=Σ D R D  , 

where 𝐃 = 𝑑𝑖𝑎𝑔(𝑑1, … , 𝑑𝑝) , 𝑑𝑖 = 2 + 𝑝−𝑖+1𝑝 , 𝑖 = 1,2, … , 𝑝   , 𝐑𝟏 = 𝑑𝑖𝑎𝑔(𝐑𝟏𝟏, 𝐑𝟏𝟐, … , 𝐑𝟏𝐦)  ,  𝐑𝟏𝐤 = (𝑟𝑖𝑗),  
𝑘 = 1,2, … , 𝑚 , 

1 ,

( 1) , ,
ij i ji j

i j
r

c i j
−+

== 
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  and  c = 0.2 . 

The covariance of the second population, 𝚺2, was set to have the same block diagonal structure as  𝚺1, with the 

only difference being the value of 𝑐, which was changed from 0.2 to 0.9.  

The number of blocks in 𝐑i, 𝑖 = 1,2  was m and the common block size was q, which meant that the size of 

each block (except for the last block) was q. The first m-1 blocks had the same size, which was q, while the size 

of the last block was 𝑝 − (𝑚 − 1)𝑞. 

Under the alternative hypothesis, we set  𝛍1 = 𝟎  and 𝛍2 = (𝛿1, 𝛿2, … , 𝛿𝑝)′,  where 𝛿2𝑘−1 = 0   and 𝛿2𝑘~𝑈(−0.5,0.5) for 𝑘 = 1,2, … 𝑝/2. Each condition was iterated 5,000 times with a nominal significance 

level of 0.05. The study considered both cases where the sample sizes were equal and unequal as follows:  

(1) In the case of equal sample sizes, the number of variables (𝑝) and sample sizes (𝑛𝑖) were set as 

follows: for 𝑝 = 50, 𝑛1 = 𝑛2 = 20; for 𝑝 = 100, 𝑛1 = 𝑛2∈{20, 40}; for 𝑝 ∈{200, 300}, 𝑛1 = 𝑛2∈{20, 40, 60}; 

for  𝑝 = 400, 𝑛1 = 𝑛2∈{20, 40, 60, 80}; for 𝑝 = 500, 𝑛1 = 𝑛2∈{20, 40, 60, 80, 100} and the size of the common 

blocks (except the last block) in the covariance matrix was set to 𝑞, where 𝑞 = 𝑛𝑖/4 . 

(2) In the case of unequal sample sizes, set 𝑛2 = 2𝑛1 and the number of variables (𝑝) and sample sizes 

(𝑛𝑖) were set as follows: for 𝑝 = 100, 𝑛1 = 20; for 𝑝 ∈{200, 300}, 𝑛1 ∈{20, 40, 60}; for 𝑝 = 400, 𝑛1 ∈ {20, 40, 
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60, 80}; for 𝑝 = 500, 𝑛1 ∈{20, 40, 60, 80, 100} and the size of the common block (except the last block) in the 

covariance matrix was set to q, where q is the maximum integer such that  𝑞 ≤ (𝑛𝑖 − 1)/5 .  

Part 2: To investigate the impact of the block size in the covariance matrix on the performance of the tests  

Under the null and alternative hypotheses as in Part 1, the mean vectors were set the same values as in Part 

1 and examined both cases where the sample sizes were equal and unequal as follows: 

(1) In the case where the sample sizes were equal, we set the number of variables (𝑝), the sample size 

(𝑛𝑖), and the common block size (𝑞) as follows: for 𝑝 = 200, 𝑛1 = 40, we set 𝑞 ∈{5, 10}; for 𝑝 = 400, we set 𝑛1∈{40, 60} and 𝑞 ∈{5, 10}. The size of each block (except for the last block) in the covariance matrix was 

equal to 𝑞, where 𝑞 = 𝑛𝑖/4 . 
(2) In the case of unequal sample sizes, we set 𝑛2 = 2𝑛1 and determined the number of variables (𝑝), 

sample sizes (𝑛𝑖), and block size (𝑞) as follows. For 𝑝 = 200 and 𝑛1 = 40, we varied 𝑞 among {3, 5, 7}. For 𝑝 

= 400 and 𝑛1 = 40, we also varied 𝑞 among {3, 5, 7}, whereas for 𝑝 = 400 and 𝑛1 = 60, we extended the set of 𝑞 values to include {3, 5, 7, 11}. We divided the variables into blocks of common size 𝑞, where 𝑞 ≤ (𝑛𝑖 − 1)/5  

with the exception of the last block, whose size was determined by the remaining variables.  

3.2 Performance of the Test 

In this study, the performance of the tests was measured using the attained significance level (ASL) and 

empirical power. The performance of the tests was evaluated by examining whether the ASL was within an 

acceptable range around the nominal level (i.e., 0.05) and by comparing the empirical power of different tests. 

Tests with ASL within an acceptable range were compared, and the test with the higher empirical power was 

considered more effective.  

The ASL and empirical power were defined as follows: 

  (1) ASL is defined as  

ASL = (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡𝐻 > 𝑐)/𝑚 , 

where   𝑡𝐻 is the test statistic obtained from simulating the data under the null hypothesis,  

     c is the critical value of the test, 

and  m is the total number of iterations in the simulation. 

(2) Empirical power is defined as  

Empirical power =  (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡𝐾 > 𝑐)/𝑚 , 

where  𝑡𝐾  is the test statistic obtained from simulating the data under the alternative hypothesis,  

   c is the critical value of the test, 

and  m is the total number of iterations in the simulation. 

When considering the ASL, Cochran's criterion (Cochran, 1954) was used at a nominal significance 

level. In this study, when the ASL value fell within the range of 0.040 to 0.060, the test was considered to 

have good performance in terms of controlling the type 1 error rate. In comparison, a test with higher 

empirical power is deemed better if it fell within the acceptable range of ASL.  

4. Results 

The study results are divided into 2 parts as follows. Part 1 is a study of the effectiveness of testing for 

equality of population mean vectors between 2 sets using 3 methods: test statistics 𝑇1,  𝑇2 and  𝑇3. The results 

are obtained at a significance level of 0.05, when the sample sizes are equal as shown in Table 1, and when the 

sample sizes are unequal as shown in Table 2. Part 2 is a study of the impact of block size in the covariance 

matrix on the testing methods of population mean vectors using 3 methods: test statistics 𝑇1,  𝑇2 and  𝑇3. The 
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results are shown in Tables 3 and 4. 

Table 1. ASL and Empirical Power of the Tests with Equal Sample Sizes and Nominal Level 0.05 

p  𝒏𝒊 q ASL  Empirical power  

 
(𝒏𝟏 = 𝒏𝟐)   𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟏 𝑻𝟐 𝑻𝟑 

50 20 5 0.0620 0.0558 0.0242 0.1734 0.1662 0.0900 

100 20 5 0.0800 0.0630 0.0142 0.2602 0.2210 0.0662 

 40 10 0.0634 0.0682 0.0398 0.3980 0.4116 0.2880 

200 20 5 0.0864 0.0624 0.0032 0.3988 0.3290 0.0392 

 40 10 0.0628 0.0620 0.0202 0.6496 0.6426 0.3860 

 60 15 0.0544 0.0568 0.0284 0.8838 0.8876 0.7734 

300 20 5 0.0944 0.0590 0.0010 0.4996 0.4104 0.0198 

 40 10 0.0682 0.0682 0.0116 0.8106 0.7938 0.4502 

 60 15 0.0530 0.0578 0.0194 0.9704 0.9712 0.8898 

400 20 5 0.0872 0.0532 0.0000 0.6016 0.4982 0.0168 

 40 10 0.0632 0.0578 0.0044 0.8994 0.8878 0.5052 

 60 15 0.0600 0.0608 0.0128 0.9940 0.9932 0.9422 

 80 20 0.0538 0.0608 0.0196 1.0000 1.0000 0.9988 

500 20 5 0.0894 0.0466 0.0000 0.6898 0.5788 0.0074 

 40 10 0.0698 0.0644 0.0030 0.9530 0.9406 0.5466 

 60 15 0.0652 0.0680 0.0122 0.9999 0.9988 0.9724 

 80 20 0.0516 0.0556 0.0134 1.0000 1.0000 0.9996 

 100 25 0.0530 0.0590 0.0216 1.0000 1.0000 1.0000 

 

Table 1 presents the results of three tests (𝑇1,  𝑇2, and 𝑇3) with equal sample sizes (𝑛1 = 𝑛2) and a nominal 

level of 0.05. The results show that as p increases, the ASL values generally decrease, indicating that it becomes 

more difficult to detect differences between the mean vectors of the two populations as the number of variables 

increases. Based on the ASL value, the 𝑇2 test is closer to the nominal level of 0.05 compared to the other tests. 

Additionally, when considering the empirical power of 𝑇2, it was found to increase towards 1 as the sample 

size increased. On the other hand, the 𝑇1 test had a different ASL value from 0.05 when the sample size was 20, 

but its performance improved as the sample size increased beyond 20. The empirical power values generally 

increase as the sample size increases. The empirical power of 𝑇2 was slightly higher than 𝑇1 when the number 

of variables and sample size were the same. 

As for the 𝑇3 test, its performance was found to be unacceptable in all studied scenarios. Overall, the results 

suggest that 𝑇1  and 𝑇2  are more reliable tests for detecting differences between the mean vectors than 𝑇3 , 

particularly when the sample size is relatively small and the number of variables is large. 
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Table 2. ASL and Empirical Power of the Tests with Unequal Sample Sizes and Nominal Level 0.05 

𝒑  𝒏𝟏
 

𝒏𝟐 𝒒 ASL  Empirical power  

 
   𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟏 𝑻𝟐 𝑻𝟑 

100 20 40 3 0.0052 0.0660 0.0056 0.1050 0.3878 0.1030 

200 20 40 3 0.0024 0.0572 0.0010 0.1332 0.5850 0.0646 

 40 80 7 0.0032 0.0534 0.0072 0.6126 0.9294 0.7310 

 60 120 11 0.0034 0.0596 0.0158 0.9250 0.9974 0.980 

300 20 40 3 0.0010 0.0554 0.0002 0.1532 0.7178 0.0418 

 40 80 7 0.0018 0.0570 0.0036 0.7888 0.9868 0.8240 

 60 120 11 0.0018 0.0550 0.0082 0.9902 0.9996 0.9976 

400 20 40 3 0.0004 0.0582 0.0000 0.1550 0.8154 0.0246 

 40 80 7 0.0016 0.0514 0.0012 0.9042 0.9964 0.8910 

 60 120 11 0.0016 0.0530 0.0060 0.9970 1.0000 0.9992 

 80 160 15 0.0020 0.0548 0.0096 1.0000 1.0000 1.0000 

500 20 40 3 0.0000 0.0566 0.0000 0.1474 0.8758 0.0180 

 40 80 7 0.0012 0.0524 0.0010 0.9494 0.9996 0.9234 

 60 120 11 0.0008 0.0608 0.0026 0.9998 1.0000 1.0000 

 80 160 15 0.0018 0.0558 0.0068 1.0000 1.0000 1.0000 

 100 200 19 0.0026 0.0576 0.0122 1.0000 1.0000 1.0000 

 

Table 2 presents the results of three tests with unequal sample sizes and a nominal level of 0.05. It was found 

that only the 𝑇2  test has an ASL value close to the nominal level of 0.05 compared to other tests. When 

considering the empirical power of the 𝑇2 test, it was found to increase close to 1 as the sample size increases. 

On the other hand, both 𝑇1 and 𝑇3 tests had performance that did not meet acceptable criteria when the sample 

sizes were not the same in all studied situations. 

 
Table 3. ASL and Empirical Power of the Tests with Varying Block Sizes for Equal Sample Sizes and Nominal Level 0.05 𝒑  𝒏𝒊 𝒒

 
ASL  Empirical power  

 (𝒏𝟏 = 𝒏𝟐)   𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟏 𝑻𝟐 𝑻𝟑 

200 40 5 0.0638 0.0620 0.0122 0.7422 0.7264 0.4280 

  10 0.0628 0.0636 0.0174 0.6472 0.6464 0.3814 

400 40 5 0.0676 0.0560 0.0014 0.9540 0.9442 0.5660 

  10 0.0660 0.0612 0.0044 0.8982 0.8824 0.5020 

 60 5 0.0646 0.0588 0.0074 0.9986 0.9988 0.9758 

  10 0.0610 0.0602 0.0110 0.9944 0.9932 0.9510 

  15 0.0576 0.0614 0.0136 0.9928 0.9910 0.9460 
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Table 3 displays the ASL and empirical power of three tests with varying block sizes, equal sample sizes, 

and a nominal level of 0.05. The results indicate that both 𝑇1 and 𝑇2 exhibit acceptable performance. When 

keeping the number of variables (𝑝) and sample size (𝑛𝑖) constant, increasing the block size enhances the ASL 

but diminishes the power of the test. This effect is evident when the sample size is 40. However, when the 

sample size is 60, the block size has a smaller impact on the power of the test. Hence, the optimal block size 

choice depends on the sample size. If the sample size is restricted, the block size should be chosen to be smaller. 

Overall, the findings suggest that selecting an appropriate block size is crucial for the performance of the 

tests. In general, larger block sizes tend to result in better performance, as demonstrated by the higher empirical 

power values for tests with larger 𝑞  values. However, there may be a trade-off between performance and 

computational efficiency, as larger block sizes may require more computational resources to compute the test 

statistics. 

 
Table 4. ASL and Empirical Power of the Tests with Varying Block Sizes for Unequal Sample Sizes and Nominal Level 0.05 

𝒑  𝒏𝟏
 

𝒏𝟐 𝒒
 

ASL  Empirical power  

 
   𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟏 𝑻𝟐 𝑻𝟑 

200 40 80 3 0.0034 0.0518 0.0034 0.7592 0.9584 0.7690 

   5 0.0036 0.0620 0.0078 0.6702 0.9404 0.7482 

   7 0.0036 0.0588 0.0078 0.6052 0.9300 0.7212 

400 40 80 3 0.0014 0.0564 0.0004 0.9586 0.9980 0.9042 

   5 0.0018 0.0546 0.0008 0.9234 0.9980 0.8928 

   7 0.0016 0.0578 0.0010 0.9006 0.9968 0.8874 

 60 120 3 0.0036 0.0556 0.0028 1.0000 1.0000 0.9998 

   5 0.0016 0.0538 0.0034 0.9996 1.0000 0.9996 

   7 0.0024 0.0568 0.0050 0.9992 1.0000 0.9996 

   11 0.0020 0.0586 0.0046 0.9988 1.0000 0.9998 

 

Table 4 shows the results of three different tests (𝑇1,  𝑇2, and 𝑇3) conducted under unequal sample sizes, 

varying block sizes (𝑞) for two different number of variables 𝑝 (200 and 400), and a nominal level of 0.05. The 

results show that only the 𝑇2 test has acceptable performance when the sample sizes are unequal. In addition, 

the impact of block size on the power of the test is dependent on the sample size, where increasing the block 

size leads to a decrease in power. This relationship is more evident when the sample size is 40, as opposed to 

when the sample size is 60 where the effect of block size is relatively smaller. 

In summary, the results suggest that the choice of block size can impact the power of the tests, and a larger 

block size may lead to a more powerful test. However, this relationship is dependent on the sample size, and 

the effect of block size may be smaller for larger sample sizes. 
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5. Conclusion and Discussion  

5.1 Conclusion 

1) For two sets of data with equal sample sizes, the 𝑇2 test proposed by Hu et al. (2017) is more efficient 
than other tests, and the empirical power of 𝑇2 increases to near 1 as the sample size increases. The second 
best test is 𝑇1 (proposed by Srivastava et al. (2013), which is more efficient when the sample size is larger than 
20. In the same situation (same number of variables and sample size), the power of the 𝑇1 test is slightly higher 
than that of the 𝑇2 test. As for the 𝑇3 test, its performance is not acceptable in all situations studied. 

For two sets of data with unequal sample sizes, the 𝑇2 test proposed by Hu et al. (2017) is more efficient 
than tests, and the empirical power of 𝑇2 increases to near 1 as the sample size increases. As for the 𝑇1 and 𝑇3 
test statistics, their performance is not acceptable in all situations studied when the sample sizes are different. 

2) For two sets of data with equal sample size and a fixed number of variables, increasing the block size 

adjustment does not greatly affect the performance of the 𝑇1 and 𝑇2 tests. However, increasing the block size 

leads to an increase in the ASL values, and the power decreases. In larger sample sizes, such as when the 
sample size is of 60 and the number of variables is 400, the impact of block size on testing performance is 
relatively small. Therefore, if the sample size is limited, the size of the block should be chosen accordingly. 

For two sets of data with unequal sample sizes and a fixed number of variables, only the 𝑇2 test showed 

acceptable performance when the block size was adjusted. Increasing the block size led to a decrease in the 
power of the test, and in larger sample sizes (e.g., when the first sample size is 60, the second sample size is 
120, and the number of variables is 400), the size of the block had a small impact on testing performance. 

3) To test the equality of high-dimensional mean vectors with a multivariate normal distribution, the choice 
of test depends on the sample size and whether the sample sizes are equal or unequal. If the sample sizes are 
equal and greater than 20, the test from Srivastava et al. (2013) should be used, while for sample sizes less 
than or equal to 20, the test from Hu et al. (2017) is recommended. If the sample sizes are unequal, the test 
from Hu et al. (2017) should be used. When the covariance matrix has a block diagonal structure, the largest 
possible block size should be chosen to preserve the data from the sample covariance matrix and obtain the 
most common variance of the samples. 

5.2 Discussion 

1) Based on the results showing unsatisfactory performance of the 𝑇1 test proposed by Srivastava et 
al. (2013) in some situations, it is possible that the test performance may depend on having a sufficiently large 
sample size and meeting the assumption 𝑛1/(𝑛1 + 𝑛2) → 𝑘 ∈ (0,1), where 𝑛 = 𝑛1 + 𝑛2 → ∞  and 𝑛𝑚𝑖𝑛 =𝑂(𝑝𝛿), 𝛿 > 12,  𝑛𝑚𝑖𝑛 = min (𝑛1, 𝑛2). It is assumed that 𝑇1 test will exhibit higher efficacy with a large sample 
size. 

2) The study found that the 𝑇3 test proposed by Ahmad (2019) did not achieve the acceptable criteria, 
possibly due to the total sample size being not greater than the individual sample size. Hence, it may not be 
compliant with the assumption  lim𝑛𝑖→∞(𝑛 /𝑛𝑖) =  𝜌𝑖 = 𝑂(1), 𝑛 = 𝑛1 + 𝑛2 , 𝑖 = 1,2. 

3) An increase in block size can lead to a decrease in power of the test, and therefore, the selection of 
block size should be dependent on the sample size. As recommended by Krishnamoorthy and Yu (2004), the 
size of the block should not exceed 𝑛𝑖/4, 𝑖 = 1, 2 for the case of equal sample sizes and should not exceed                  min ((𝑛1 − 1)/5, (𝑛2 − 1)/5) for the case of unequal sample sizes. 
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