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Abstract 

The study is aimed at identifying the orders of Time Series Models in Non-Stationarity Non-normal data structure from Uniform distributions 
with a view to determining the best Autoregressive/ Moving Average orders from time series models (ARMA and ARIMA) under different 
underline distributions when Non-Stationarity assumption is assumed. The data is generated from Autoregressive (AR) linear of second orders 
of general classes of Autoregressive functions. The generation of the data used for this simulation study is non-stationary cases and non-
normal. The data were simulated for both response variables and error terms from non-normal Distribution. The result shows that the values of 
the penalty function: AIC, BIC, HQIC and FPE of the order selection increases with increase in sample size but decreases with increasing 
order. It was observed that at both lower (20, 40) and larger (160,180 and 200) sample sizes, models with smallest orders. Similarly, the 
selection process is tied to the principle of parsimony i.e smaller orders are selected, but vary with the variation in the distribution of the series. 
The study recommends the need to develop a methodology for model selection combining objective and subjective techniques. 
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1.0: Introduction  

Time series analysis in its entirety serves two broad purposes which are, to model a successive observation of a given variable as 

well as to provide a better understanding of the stochastic mechanism that characterized any observed series and secondly to 

make predictions of the future values of the observed series on the basis of the historical observation and other possibly relevant 

factors. Therefore, the need to have a proper and better description of the series cannot be over emphasis. Since, the primary 

objective of the model selection process is to assess competing models and select the best that describes the data Ongbali, 

Igboanugo, Afolalu, Udo and Okokpujie (2018). Modeling and forecasting are the main stay of any time series analysis or 

investigation; in modeling aspect, order identification is very crucial, as the parameters of the fitted model depends largely on 

the correct order selected and subsequent estimation and performance, as there should be method that is suitable for fitting 

particular model. Model identification is still a ‘thorny issue’ in robust time series analysis (Martin and Yohai 1986). As Chang 

(1982) remarks: ‘We need to protect not only the parameter estimation process against the adverse effect of exogenous 

interventions but also the model identification process so that appropriate model forms for the underlying time series can be 

specified in the very first place.’ Knowledge of the data generating mechanism also plays a great role in the identification of the 

296

www.ijrp.orgIJRP 2021, 91(1), 296-306; doi:.10.47119/IJRP1009111220212578



tentative model (Cryer and Chan, 2008). Hastie, Tibshirani  and Friedman  (2009) opined  that cardinal reason of model 

identification is to assess the performance of different models and select the best fit among the several models for particular 

data. the use final prediction Error (FPE) for model order selection being the expected variance of prediction error when an 

Autoregressive(AR) model was fitted was suggested and objective of model selection include finding a good predictor that 

describes a system and Akaike Information Criterion (AIC) is a principal model selection method (Burnham , Anderson  and 

Huyvaert , 2011) 

Numerous literatures (Beguin, 1980, Davies 1984, Tsay and Tiao 1985, Choi, 1992, Chan, 1999, Eija, 2015, Norhayati, 2016)    

abound on order selection since the pioneer work of Box and Jenkins in (1975) but not yet extensive. All of them failed to 

consider different distributions of error terms and responses in respect to both stationary and non-stationary data structures. 

More so, the ACF and PACF frequently used in the literature for identification of models’ orders depend on the size of the series 

and very sensitive to outliers or violation of the ideal normal assumption (Stadnytskaet’al, 2008). This study therefore intends to 

identify a suitable order for the different time series models under different distributions and sample size in fitting and 

forecasting stationary and non-stationary data structures using different criteria. 

2.0 Methodology  

For non-stationary cases, the data will be simulated for response variables from Uniform distribution with the parametres of 200, 

32 and 38 while that of error terms from normal distribution with mean 1000 and variance 10, so as to violate the white noise 

assumption of zero mean and difference means and variances of the responses and error terms, thereby violate the Stationarity 

assumptions i.e; 

௧ܻ௜̱ܰሺʹͲͲǡʹͲሻܽ݊݀݁௧௜  ̱ܰሺʹͲͲǡͳͲሻFor non Stationarity cases 

ݐ ൌ ͳǡʹǡ ǥ ǡʹͲǡ ͶͲǡ ͸Ͳǡ ͺͲǡ ͳͲͲǡ ͳʹͲǡ ͳͶͲǡ ͳ͸Ͳǡ ͳͺͲ ܽ݊݀ ʹͲͲ. ݅ ൌ ͳǡʹǡ ǥ ǡ ͳͲͲͲ 

The generation of the data used for this simulation study is non-stationary cases. 

x <w- runif(120,32, 38) 

x[t] <- 0.7*x[t-1]+0.9*x[t-2]+w[t] 

A Non stationary data from a Non-Normal data structures were simulated at various sample sizes of 20, 40, 60, 80, 100, 120, 

140, 160, 180 and 200 respectively. Several ARMA (p, q) were fitted on the simulated data; the four different models 

considered are: ARMA (1, 1), ARMA (1, 2), ARMA (2, 1) and ARMA (2, 2), ARIMA (1, 1, 1), ARIMA (1, 1, 2), ARIMA (2, 

1, 1) and ARIMA (2, 1, 2) respectively. 

 The effect of different levels of ORDER (0.3, 0.6, and -0.3, -0.6) at the sample size of 20, 40, 60, 80, 100, 120, 140, 160, 180 

and 200 which represent small, moderate and large sample sizes respectively on the simulated data from the non-stationary and 

non-normal data . The simulation study was carried out with 1000 iteration on each case in R Statistical software. respectively.  

2.1: Model Assessment Criteria  
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The goodness of fit for each model was assessed using the criteria: of AIC, BIC, HQIC and FPE. The model with lowest criteria 

value is considered the best among the models for the simulated data. Penalty function are equally widely used for model 

identification: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Hannan-Quin Information 

Criterion (HQIC) and Final Prediction Error (FPE) 

AIC= log ሾ൫ߪොଶ௣ǡ௤൯ ൅ ሺ௣ା௤ሻଶ௡                               1.0 

BIC=log ሾ൫ߪොଶ௣ǡ௤൯ ൅ ሺ௣ା௤ሻ୪୭୥ ሺ௡ሻ௡                             2.0 

HQIC= log ሾ൫ߪොଶ௣ǡ௤൯ ൅ ሺ௣ା௤ሻଶ୪୭୥ ሺ୪୭୥ሺ௡ሻሻ௡                    3.0 

FPEሺpሻ ൌ ௣ଶߪ ቀͳ ൅ ௣ேቁ ǡ ௣ଶߪ݁ݎ݄݁ݓ ൌ ேேି௣  ොଶ            4.0ߪ

FPEሺpሻ ൌ ேேି௣ ቀͳ ൅ ௣ேቁ ොଶߪ ൌ ேା௣ேି௣  ො௣ଶ    5.0ߪ

3. Analysis, Results and Discussion  

The orders of each model family considered are investigated and the results were presented in tables according to the model 

families at various sample sizes of 20, 40, 60, 80, 100, 120, 140, 160, 180 and 200 respectively and the criteria for the 

assessment, at different sample sizes. Here, the data were simulated from normal of both observed values and error terms to 

achieve the normality assumption. The criteria like AIC, BIC, HQIC and FPE are used to determine the models’ orders such that 

a model’s order with the least criteria is chosen for the model’s family. 

3.1: Order Determination for ARMA on Stationary Data Structure from Non-Normal Distribution 

From each iteration simulated, the values of the criteria for the assessment (AIC and BIC) were computed and their average 

values were recorded according to sample sizes as shown in table 3.1. The values from the tables were plotted in figures 3.1a 

and3.1b respectively. The model with lowest criteria value is considered as the best. For each of the iteration the values of the 

criteria for the assessment (AIC, BIC, HQIC and FPE) were computed and their average values were recorded according to 

sample sizes as shown in tables above 

Table 3.1: AIC and BIC Values of ARMA (p) Model for UNIFORM Data 

 AIC BIC 

Sample 

Sizes 

ARMA(

1,1) 

ARMA 

(1,2) 

ARMA 

(2,1) 

ARMA 

(2,2) 

ARMA 

(1,1) 

ARMA 

(1,2) 

ARMA 

(2,1) 

ARMA 

(2,2) 

20 110.295 115.601 112.926 105.838 114.2785 120.5797 117.905 111.8131 

40 194.483 187.526 190.616 201.834 201.2392 195.9707 199.061 211.9681 

60 282.374 285.84 280.839 280.850 290.7514 296.3118 291.310 292.7765 
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80 368.496 346.248 390.522 370.153 378.0245 358.1585 402.432 384.4456 

100 453.962 443.504 452.556 454.149 464.383 456.5299 465.581 469.7808 

120 447.750 582.033 524.198 541.950 458.1709 595.9712 538.136 558.6753 

140 638.439 604.282 592.576 590.849 650.2057 618.9902 607.284 605.4997 

160 738.885 672.108 681.703 670.410 751.1865 687.4843 697.079 688.8611 

180 764.501 766.719 777.199 775.848 777.2734 782.6839 793.164 795.0064 

200 912.324 851.023 846.967 841.241 925.5177 867.515 863.458 861.0312 

 

Fig.3.1a: AIC values for ARIMA (p, d, q) Models form a Non-normal Data 

 

 

Fig.3.1b: BIC values for ARIMA (p, d, q) Models form a Non-normal Data 
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Table 3.1 shows the relative performance of the four fitted models on the simulated data at various sample sizes. The average 

values of AIC and BIC for each of the models are recorded in the table above and then plotted in figures 3.1a and 3.1b 

respectively. At sample sizes 20,140,160 and 200 ARMA (2, 2) was selected as the best fit. ARMA (2, 1) was the best fit at 

sample sizes 60 and 120. While ARMA (1, 2) was the best fit at sample sizes 40, 80 and 100 respectively. 

Table 3.2: HQIC and FPE Values of ARMA (p) Model for Stationary Non-normal Data( UNIFORM ) 

 HQIC FPE 

Sample 

Sizes 

ARMA(

1,1) 

ARMA 

(1,2) 

ARMA 

(2,1) 

ARMA 

(2,2) 

ARMA 

(1,1) 

ARMA 

(1,2) 

ARMA 

(2,1) 

ARMA 

(2,2) 

20 107.143 115.717 107.077 106.511 68.02588 72.34176 66.4970 64.63 

40 197.331 190.742 192.882 194.093 110.1149 104.7689 106.012 105.1989 

60 281.677 271.916 270.576 293.316 150.99 144.0379 143.297 154.3058 

80 385.265 355.420 380.140 361.475 202.8649 185.187 198.510 186.8578 

100 463.163 424.137 441.477 452.271 241.0412 218.6998 227.906 232.0155 

120 514.856 513.568 528.608 528.600 265.6905 263.3672 271.272 269.6223 

140 614.786 595.521 610.501 609.037 315.8526 304.1307 311.948 309.5167 

160 698.926 688.554 704.754 671.923 357.759 350.6888 359.098 340.3689 

180 796.383 771.138 822.278 787.773 406.5805 391.8268 418.263 398.7229 

200 924.504 850.939 870.839 865.413 471.1764 431.5553 441.808 437.295 
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Fig.3.2a: AIC values for ARIMA (p, d, q) Models form a Non-normal Data 

 

Fig.3.2b: AIC values for ARIMA (p, d, q) Models form a Non-normal Data 

Similarly, table 3.2 above shows the relative performances of the four fitted models on the simulated data at various sample 

sizes are presented. The average values of HQIC and SIC for each of the models are recorded in the table above and plotted in 

figures 3.2a and 3.2b respectively. It was observed that the values of both AIC and BIC increases with increase in sample sizes 

of the simulated data. At sample sizes 20,140,160 and 200 ARMA (2, 2) was selected as the best fit. ARMA (2, 1) was the best 

fit at sample sizes 60 and 120. While ARMA (1, 2) was the best fit at sample sizes 40, 80 and 100 respectively. 

3.2: Determination of Best order of ARIMA Based on AIC and BIC Criteria 

From each iteration simulated, the values of the criteria for the assessment (AIC and BIC) were computed and their average 

values were recorded according to sample sizes as shown in table 3.3. The values from the tables were plotted in figures 3.3 and 

3.3b respectively. The model with lowest criteria value is considered as the best. 
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Table 3.3 AIC and BIC Values of ARIMA (p) Model for UNIFORM Data 

 AIC BIC 

Sample 

Sizes 

ARIMA(

1,1,1) 

ARIMA 

(1,1,2) 

ARIMA 

(2,1,1) 

ARIMA 

(2,1,2) 

ARIMA 

(1,1,1) 

ARIMA 

(1,1,2) 

ARIMA 

(2,1,1) 

ARIMA 

(2,1,2) 

20 102.756 

 

108.535 

 

110.195 

 

108.164 

 

105.59 

 

108.4151 

 

113.973 

 

112.887 

 

40 202.937 

 

188.239 

 

212.130 

 

187.926 

 

207.9285 

 

194.8939 

 

218.785 

 

196.2447 

 

60 292.051 

 

278.122 

 

290.181 

 

274.508 

 

298.2836 

 

286.4323 

 

298.491 

 

284.8965 

 

80 373.930 

 

360.644 

 

358.135 

 

357.878 

 

381.0387 

 

370.1222 

 

367.613 

 

369.7259 

 

100 463.040 

 

458.664 

 

448.306 

 

441.796 

 

470.8255 

 

469.0448 

 

458.686 

 

454.7721 

 

120 570.121 

 

521.541 

 

543.579 

 

537.352 

 

578.4584 

 

532.6576 

 

554.696 

 

551.2484 

 

140 614.511 

 

597.187 

 

624.306 

 

584.610 

 

623.3148 

 

608.9254 

 

636.044 

 

599.2827 

 

160 726.655 

 

712.008 

 

712.051 

 

681.150 

 

735.8625 

 

724.2845 

 

724.326 

 

696.4951 

 

180 822.195 

 

765.903 

 

782.957 

 

729.186 

 

831.758 

 

778.6526 

 

795.707 

 

745.1232 

 

200 898.535 

 

850.923 

 

861.888 

 

853.599 

 

908.4151 

 

864.097 

 

875.061 

 

870.0656 
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Fig.3.3a: AIC values for ARIMA (p, d, q) Models from a Non-normal Data 

 

 

Fig.3.3b: BIC values for ARIMA (p, d, q) Models from a Non-normal Data 

Table 3.3 above shows the relative performance of the four fitted models on the simulated data with 1000 iterations at various 

sample sizes. The average values of AIC and BIC for each of the model are recorded in the table above and then plotted in 

figures 3.3a and 3.3b respectively. At sample sizes 20, ARIMA (1,1,1) was selected as the best fit. ARMA (2, 1, 2) was the best 

fit at sample sizes 40, 60, 80,140, 160, 180 and 200 respectively. While ARIMA (1, 1, 2) was the best fit at 120 

Table 3.4 HQIC and FPE Values of ARIMA (p) Model for Stationary UNIFORM Data 

 HQIC FPE 

Sample 

Sizes 

ARIMA(

1,1,1) 

ARIMA 

(1,1,2) 

ARIMA 

(2,1,1) 

ARIMA 

(2,1,2) 

ARIMA 

(1,1,1) 

ARIMA 

(1,1,2) 

ARIMA 

(2,1,1) 

ARIMA 

(2,1,2) 

20 98.4687 102.163 109.063 92.5975 53.64235 64.65706 69.3247 56.70176 
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40 196.121 192.831 192.431 190.682 126.1213 107.5 107.267 102.3827 

60 267.178 277.857 287.237 273.896 144.5353 148.8789 154.062 145.1321 

80 391.59 357.765 352.845 366.100 207.8665 188.0435 185.391 190.9431 

100 478.188 452.143 455.803 463.097 250.6404 235.1904 237.133 239.3847 

120 556.144 532.496 575.216 541.568 289.0395 274.9628 297.418 287.5723 

140 640.450 616.526 616.186 620.641 330.9145 316.7607 316.583 317.2408 

160 723.697 696.066 702.806 697.454 372.3045 356.2744 359.773 355.3089 

180 806.649 767.843 772.523 780.898 413.5903 391.8268 394.246 396.8722 

200 888.189 854.864 857.964 815.899 454.1842 435.2959 436.893 413.5017 

 

 

Fig.3.4a: HQIC values for ARIMA (p, d, q) Models from a Non-normal Data 
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Fig.3.4b: FPE values for ARIMA (p, d, q) Models from a Non-normal Data 

Similarly, table 3.4 above shows the relative performance of the four fitted models on the simulated data with 1000 iterations at 

various sample sizes. The average values of HQIC and FPE are recorded and then plotted in figures 3.4a and 3.4b. At sample 

sizes 20, ARIMA (1, 1, 1) was selected as the best fit. ARMA (2, 1, 2) was the best fit at sample sizes 40, 60, 80,140, 160, 180 

and 200 respectively. While ARIMA (1, 1, 2) was the best fit at 120 

 

4.0: Conclusion and Recommendation 

The general conclusion is that for Non-stationary Non-normal data, ARMA smaller orders were picked at almost all the sample 

sizes, for ARMA and ARIMA respectively. That at both lower (20, 40) and larger (160,180 and 200) sample sizes, models with 

smallest orders [ARMA (1, 2) and ARMA (2, 1) ] were picked on the average while at medium sample sizes,  models with 

larger orders were picked. Similarly, for ARIMA (p, d, q) models, from sample sizes 0f 20-60, models with smaller orders were 

picked [ARIMA (1, 1, 2) and ARIMA (2, 1, 1)] and at medium sample sizes from80-120 larger orders were picked ARIMA (2, 

1, 2). The selections are almost identical in both d non-normal data structures, but vary with the variation in the distribution of 

the series. 

Based on the results of the present study there is the need to develop a methodology for model selection combining objective 

and subjective techniques. Since, majority of researchers are unlikely to know the type of ARIMA process underlying the data 

understudy, so it to avoid relying on precarious procedures. 
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