&%, IJRP.ORG

Inte escarch Public
ISSN: 2708-3578 (Online)

583

Enhancement of Super Sort Sorting Algorithm Using Identical
Value Search Concept

Jeanus Marco CardigNicole Anne Marie Cruz Vivien Agustirt, Khatalyn Matj,
Dan Michael Cortez

1 jmicaraig2018@plm.edu.ph
1namocruz2018@plm.edu.ph
lvaagustin@plm.edu.ph
tkemata@plm.edu.ph
tdmacortez@plm.edu.ph
1Computer Science Department, College of EngineeimyTechnology
Pamantasan ng Lungsod ng Maynila (University of the &fiManila)
Intramuros, Manila 1002, Philippines

Abstract

The Super Sort Sorting algorithm is a sorting algorithm that usesrfbsgtection, backward selection,
merging, and partition to sort a given list or data set. This stiltfocus on the enhancement of the Super Sort
Sorting Algorithm on the forward selection part. This paper introdarcenhanced version of the algorithm where
the concept of Identical Value Search was implemented on the first fopaasd This method eliminated the
small sublists left behind by the original algorithm's forward pass @oded the overall runtime of the algorithm.

Keywords: Super Sort Sorting Algorithm; Sorting 8tghm; Sorting; Identical Value Search

1. Introduction

As we live in a digital age where the data and information are abundant andqgro8tednternet, it is hard
to arrange and keep this information orderly. Sorting is a methodlasfggement of sorts to keep the items in
an orderly manner according to the preferred order of themetsothe other hand, algorithms are a digp-
step process on how to solve a problem to obtain the desired reselieindhWith these two ideas combined,
sorting algorithms emerged and can be defined as algorithms focusatirognitems with the help of computer
processes. An example of a sorting algorithm is Super Sort Sorting Algoréhetoded in 2018 by Yash
Gugde. This newly proposed sorting algorithm uses forward and backward selgatises, which is the key
point or the unique feature of the algorithm, as this is done to compemsttte ibsence of double-checking
in a sorting algorithm. Moreover, these passes will produce unsorted listswilthioldergo a merge sort loop
until the whole initial list is sorted. Furthermore, it is said that the Super Sdiridgsaligorithm can handle large
batches of data.

Although, the Super Sort Sorting algorithm may have some setbacks, sihehpaeduction of multiple
unsorted lists and the production of many sublists during merge pabses poth affect the costs and the run
time of the algorithm. The traversal of sorting among the elements presentist thiized the concept of
comparison of each element with the highest element value. If run with randoetsldtestraversal is said to
be unreliable since it may cause an increase in the creation of sublists. Tdysagns to identify the
vulnerabilities of the Super Sort Sorting Algorithm and how it can further be optimimednhanced.

1JRP 2022, 101(1), 583-591; doi:.10.47119/1JRP1001011520223223 WWw.ijrp.org

Jeanus Marco Caraig / International Journal of Research Publications (1JRP.ORG) ‘.\ IJRP.ORG

Inte escarch Public
ISSN: 2708-3578 (Online)

584

2. Related Studies

Sorting is a method used to arrange items in a specific order. It isausepose and maintain order in the
list. In the Yudav & Gupta (2021) study, sorting is a method for gpttie initial list of given elements and
arranging them in the desired order, whether in ascending or descendingThiideprinciple led to the
invention of sorting algorithms. These sorting methods are used thedidt's elements. Because there are so
many different ways to sort items or elements in a list, sorting algorithnesligenome quite diverse. Bubble
Sort, Insertion Sort, Merge Sort, and Quick Sort are just a handful of thesp#ifter taking into account
computer-dependent variables like internal sorting (sorting based on internal yjeexternal sorting (if
sorting requires a secondary memory), and device complexity (time, spacepmputational complexities)
Yudav and Gupta (2021) classified Merge Sort, Insertion Sort, and Bubble Stabksalgorithms. Quick
Sort, Heap Sort, and Selection Sort are all unstable algorithms in the meantime.

Although there are many ways on how a list can be sorted, which paved tHerwhg emergence of
variations of the sorting algorithms, the following are the most uste imdustry: Merge Sort, Insertion Sort,
Bubble Sort, Quick Sort, Heap Sort, and the Selection Sort. First on the list is theSdergehe Merge Sort
is based on the concept of dividing and conquering, in which two sanrtegk will be sorted into a single one.
In the process of the Merge Sort, the initial list will be divided into two (2spashere the total number of
elements will be divided into two (2). These two (2) parts will be divided into seutgtsts; afterward, they
will be merged again to obtain the final sorted list.

Meanwhile, the Insertion sort is based on the idea of starting with one elemensextiddrone element at
a time. It uses a card game concept where the players put one card aingotitime stack. The Insertion Sort
can be divided into two (2) parts: the linear search and the binary s€hechifference between these two
searching methods is that the linear uses a unitary method. In contrbBtatiyesearch uses the idea of dividing
two (2) separate sublists to further search the element. Bubble sort, orethieemith, two consecutive elements
in the list will be compared and be swapped if necessary, depending on the aleaimgdment, whether it is
in ascending or descending order. There is a traversal happening on eachialémedist; thus, the comparison
operation on each element is done and will yield the sorted list. The Quick Sortigeaatid-conquer strategy
that utilizes a "pivot" in the array of elements. When the pivot is seleceeQuitkSort will produce a list
where on the left side of the pivot will be the lesser values than the pivot valuen émel right side are the
higher than or equal values to the pivot value. Next, the Heap Sort uses tld tdeaparison to sort the
elements of the list. The heap sort is like a binary tree, and there is lacagaixs a maximum element placed
on the root, and the lesser values will be the leaves. Lastly, the Selection Sort is basedeanofhselecting
whether it is the maximum or minimum element and will store it in its respective positiwill repeat the
same steps until one element remains on the array.

In Computer Science, many people use different sorting algorithms ag¢h@aaiay approaches or ways to
sort a list at hand, thus resulting in the generation of many sorting algarithresulted in the emergence of
many hybrids or new ideas of sorting to sort the elements faster anchacorately. The Super Sort Sorting
algorithm is a unique sorting algorithm that takes a "divide-and-conquer" sttategyt. The algorithm is
notable for its forward, and backward selection passes with multiple merge passes toesatedHist.

Yash Gugale (2018) explained how the Super Sort Sorting algorithm workatimg ghat it is based on
selecting the order of the initial sorted components in an unsorted list. $Sheaghlist is then traced using
forward, and backward selection passes, and any beginning entries that rerapipeaded to the unsorted
list. From the center, the unsorted list will be partitioned, with each sublist perfpfammard and selection
passes. If any unsorted elements remain on the list, the same technique will beastidning and forward
and backward selection passeantil all of the elements have been sorted. The sublists will be combined to
create larger sublists.

WWw.ijrp.org

Jeanus Marco Caraig / International Journal of Research Publications (1JRP.ORG) @ JJ RP.ORG

ISSN: 2708-3578 (Online)

585

Since the Super Sort Sorting algorithm is based on the Quick Sort and the MergenSepts, both the
Quick Sort and Merge Sort use the idea of the divide-and-conquer appideciwo sorting algorithms'
concepts are very similar yet have distinctive differences. The Merge Sort usiessiba df an array into two
(2) separate parts; the same concept is applied to the Quick Sort. Still, insteading dihe array from the
middle, it uses the concept of selection of a pivot element and performarthioming based on the pivot
element selected. Another difference between the two sorting algorithm concenptstlie thlerge Sort uses
the idea of breaking down the array into smaller sublists and usitiiplmmerge passes to create the final
sorted list. While the Quick Sort does not require breaking the arragnivatber sublists, it will revolve around
the idea of comparing each element value to the pivot element value. It withewor based on the preferred
sorting using partitioning. According to Taiwo et al. (2020) study atlthors differentiated the Merge Sort and
Quick Sort based on how they perform their sorting and use recuestireggo produce the final sorted list.
The authors noted that the Quick Sort works faster but is only limitedagsawith a smaller number of
elements or data.

Meanwhile, the Merge Sort is slower than the Quick Sort but is ideal for arrays wighefeorents or data.
Also, Merge Sort needs additional memory space to store extra arrays bstd,swhile the Quick Sort needs
space. The authors concluded that Quick Sort is the ideal sorting in smaller batdhts while in large
batches of data is Merge Sort. The authors also noted that the programmeréirsthdgidadware of how much
data they will be dealing with and what type of sorting method they want to imlem#hat the programmers
may know the advantages and disadvantages of their preferred algorithm.

There have been studies that employ the Super Sort Sorting method, includingtarses MPI and CUDA
to implement the algorithm. The authors of this study used parallel progng to perform sorting and merging
tasks simultaneously. According to this study, the Super Sort Sorting algevithr@UDA takes longer than
sequential and MPI sorting for small input sizes. On the other hand, CUDArfuutps both sequential and
MPI counterparts when dealing with huge input sizes. The time taken is gradually atfisedhan the abrupt
increase seen in a sequential program. This study discovered that parghaipning with MPI1 and CUDA
works effectively for huge input sizes when utilizing the Super Sort Sorting algorithm.

Another study applied the Super Sort Sorting algorithm to the cyclic amplituddod&atation Angle
Estimation of JPEG Compressed Image by Cyclic Spectrum Analysis. In a JPE@ssimp situation, the
Super Sort Sorting approach minimized rotation angle estimation inaccuracycaeds$ully recognized and
located tampering; however, it may be improved in the future.

Nevertheless, the Super Sort Sorting algorithm exhibits some problems or limitatiensf which is the
production of multiple sublists and breaking them into smaller sublistdergm merge passes. This problem
can cause an increase in time performance complexity. According to Yerr&hamapiri (2020), the greatest
disadvantage of the Super Sort Sorting algorithm is that it increases the cestutfoexwhen combining small
sublists with fewer components. Another study by Lawrence (2021) medtibat "the disadvantage is that
multiple merge passes may be required with costly writes," which is present in the Stpert8ay algorithm.
This algorithm requires multiple merge passes for sorting. Moreover, antibgrby (Sara, M.R.A, et al.,
2019) mentioned that the use of an extra array [list] puts merge sodisadvantageous position, as it takes
some extra time to copy the elements to and from the extra array [lidtjeFroore, the algorithm uses the
highest current value method for traversing, thus producing sufidisthe same value but different positions
in the list.

WWw.ijrp.org

Jeanus Marco Caraig / International Journal of Research Publications (1JRP.ORG) @ IJ RP.ORG

ISSN: 2708-3578 (Online)

586

3. Existing Super Sort Sorting Algorithm
3.1.Overview

The Super Sort Sorting algorithm utilizes the concept of forward and backetation passes for the
sorting and traversal of the algorithm. The algorithm will produce a forwartdackward selection that passes
sublists containing the current highest element and the elements with a higher orakgain the current
highest element during its traversal.

Figure 1. Selection Pass

if L[i] >= current_highest then
current_highesfL][i]sortedlist.append(current_highest)

L.remove(current_highest)

Figure 1 shows how the appending of the elements to the sorted list magy imeckiwvard or the forward
sorted list. Both passes use the same concept on how they append the rvaaek sorted list; the only
difference is that the forward pass starts from the outer leftmost side. Meartivla backward sorted pass
begins from the outer rightmost side. If elements are left behind ofortvard and backward passes, the
algorithm will produce another unsorted sublist. The sublist will be partitiontedhiro (2) parts, and the
forward and backward selection passes will be performed as well. A merge sbe péiformed to combine
these sublists to produce the final sorted list

3.2.Problem Statement

The Super Sort Sorting algorithm is a novel sorting algorithm thatfasgard, and backward selection
passes for sorting, along with merge steps to produce the final sortédpti;m examination, the researchers
found some setbacks or problems encountered in the Super Sort Slgirithm. The algorithm produces too
many sublists, especially when it encounters the same elements in the list, resultidigianaddosts. The
Super Sort Sorting algorithm uses forward, and backward selection passeddtie soiginal list of elements
initially, and the remaining elements will be divided into smaller sublists. The valgeithm will undergo
multiple merge passes until the final sorted list is produced. This would remaniy unsorted sublists, which
are costly to the system. Below is a visualization example of the problem that occurs

WWw.ijrp.org

Jeanus Marco Caraig / International Journal of Research Publications (1JRP.ORG) @ JJ RP.ORG

ISSN: 2708-3578 (Online)

587

Figure 2 Problem Visualization

6 4 2 1 2 1
/IFORWARD SELECTION PASS

6 = HIGHEST CURRENT VALUE

TRAVERSION FORWARD SORTED LIST
6>=6 6
6>=4
6>=2
6>=1
6>=2
6>=1

/IBACKWARD SELECTION PASS

1 = HIGHEST CURRENT VALUE

TRAVERSION BACKWARD SORTED LIST
1>=1 1
1>=2 2
2>=1
2>=2 2
2>=4 4

UNSORTED LIST: 1

In figure 2, it can be seen that even if the fourth (from left to riglethent 1 is another generated sublist,
which is an additional costly write. The production of a sublist is regardedasdlya write which can put the
merge sort in a disadvantageous position as it requires it again to write anbliserstwm the concept of the
Super Sort Sorting algorithm that uses the Merge Sort to merge the gesealdistd to create the final sorted
list, this could greatly affect the algorithm's performance as it may slow deviimii performance of the CPU
that runs the algorithm.

3.3. Pseudocode of Super Sort Sorting Algorithm

Check if the list > 1 then
Generate two empty lists: the forward sorting list and the backward sorting list
/[Forward Selection Pass
Take the first value on the outer left side most of the list then compare to tredamznt, the
traversal of values will be from left to right
Append the first value which is the current highest to the forward sorted list

If the next element has a higher value or equal value, append it to the forvwaddlisb
Else, skip the element and retain on the list, and move on to the next value

WWw.ijrp.org

Jeanus Marco Caraig / International Journal of Research Publications (1JRP.ORG) ‘.\ IJRP.ORG

Inte escarch Public
ISSN: 2708-3578 (Online)

588

Repeat the process until all elements in the list are traversed
//Backward Selection Pass
Take the first value on the outer right-side most of the list then compire next element, the
traversal of values will be from right to left
Append the first value which is the current highest to the backward sorted list
If the next element has a higher value or equal value, append to the backwetdisto
Else, skip the element and retain on the list, and move on to the next value
Repeat the process until all elements in the list are traversed
If there are elements that remained on the initial list, create a new sublist to contain, whielcealiéd as
unsorted list
Divide or partition the unsorted list into half
Divide the sublists from the unsorted list into smaller sublists
Perform forward and backward selection passes to the smaller sublists
Perform a merge sort to all the sublists, including the forward and backorted lists

4. Methodology
4.1.Enhancement of the Algorithm

To solve the problem of producing multiple unsorted lists from theféiratard pass, we have implemented
an ldentical Value Search function on the existing Super Sort Sorting Algorithm. Afgthéhm picks up
the first value as the current highest value, it will search the list for identical values beforéngatherentire
dataset, eliminating the small, unsorted lists that come from skipped values duéipée rahanges in the
current highest value. The researchers used an experimental design to investigatevehapipiication of the
Identical Value Search function would be beneficial to the algorithm.

4.2. Pseudocode of the Enhanced Super Sort Sorting Algorithm

Check if the list > 1 then
Generate two empty lists: the forward sorting list and the backward sorting list
/[Forward Selection Pass
Take the first value on the outer left side most of the list then compare to tredamegnt, the
traversal of values will be from left to right
Append the first value which is the current highest to the forward sorted list
Search thelist for valuesidentical to the current highest element
If the next element has a higher vabreequal-value, append it to the forward sorted
list
Else, skip the element and retain on the list, and move on to the naxt val
Repeat the process until all elements in the list are traversed
//Backward Selection Pass
Take the first value on the outer right-side most of the list then comptre next element, the
traversal of values will be from right to left
Append the first value which is the current highest to the backward sorted list
If the next element has a higher value or equal value, append to the backwetdisto
Else, skip the element and retain on the list, and move on to the next value
Repeat the process until all elements in the list are traversed
If there are elements that remained on the initial list, create a new sublist to contain, whielcealiéd as

WWw.ijrp.org

Jeanus Marco Caraig / International Journal of Research Publications (1JRP.ORG) ‘.\ IJRP.ORG

Inte escarch Public
ISSN: 2708-3578 (Online)

589

unsorted list
Divide or partition the unsorted list into half
Divide the sublists from the unsorted list into smaller sublists
Perform forward and backward selection passes to the smaller sublists
Perform a merge sort to all the sublists, including the forward and backorded lists

4 3. Identical Value Search Function

The researchers came up with searching the list before the first forward pass beoage the Identical
Value Search function is created. The identical value search function eliminates the peetite unsorted
lists further. The IVS function takes in the current highest value, traversing theelisthing for identical
values inside the list, and appends them to the first forward sorted list. Searchdenfical values with the
current highest value will eliminate the production of unsorted lists prodycskigping them due to the early
change in the current highest value of the original algorithm.

5. Results & Discussion

The original algorithm and the enhanced version of the algorithm lemretbsted with the same data set,
which highlights the problem of the original Super Sort Sorting algorithra.pfbgram was executed on an
Intel Core i5 processor @ 2.3GHz with 12GB of DDR4 RAM running WindbW$iome Single Language
64-bit. The algorithms present in this study were implemented in Python 3.9.

Table 1. Algorithm runtime comparison

Average Time to Sort

Sorting Algorithm (ms) in 5 different Variance
datasets

Original Super Sort Sorting Algorithm 1104 6.328

Enhanced Super Sort Sorting Algorithm 6.26 6.783

Table 1 shows that the Enhanced Super Sort Sorting Algorithm needed lessdortehie dataset than the
original Super Sort Sorting algorithm. This result was possible due to the rediactiee amount of sublists
created during the overall runtime of the program. A t-test is conductedve the difference between the
average runtime of the Original Super Sort Sorting algorithm and the Enhauaped Sort Sorting algorithm
The t-score calculated was 7.175, which proves at 95% confidence level that ehsigniicant difference
between the average runtime of the two algorithms

WWw.ijrp.org

Jeanus Marco Caraig / International Journal of Research Publications (1JRP.ORG) ‘.\ IJRP.ORG

Table 2. Algorithm sublist creation

Sorting Algorithm Approximate Sublists Created (20 values

Original Super Sort Sorting Algorithm 23
Enhanced Super Sort Sorting Algorithm 18

The implementation of the Identical Value Search function also aimed to reducenther rdi sublists being
created during runtime. This was expected to reduce the memory load th&iatgorithm's runtime. The
reduction in the amount of sublists created is shown in Table 2.

6. Conclusion

In this paper, the researchers proposed a modification of the original Sape®orting algorithm. The
Identical Value Search function is implemented in the algorithm, resulting in better raméhreducing the
number of unsorted lists produced. Implementing the Identical Value Seardiofuresulted in a more
efficient running of the algorithm since it searches the current highest valeelist thespite its position in the
list. With this enhancement, the enhanced Super Sort Sorting algorithm was aiudetite same value of the
current highest and store it in the respective selection pass sorted list. This restiieedentuction of the
unsorted elements in the initial list. This shows that the method implemented hasfallgaeshanced the
algorithm's overall performance.

For future works, the researchers recommend implementing the algorithm D43 or other languages of
your choice to enhance the speed of execution and overall runtime

Acknowledgments

First and foremost, the researchers would acknowledge and thank God for gudlieiglightening them
during their journey. Their families for their unwavering love and suppaortheir professor, Ma'am Vivien
Agustin, for her counsel as their thesis adviser. Dr. Dan Michael Cortez atch&@alyn Mata, their other
academics, for their guidance as the researchers' thesis coordinators. To tharidcstt§f of the Pamantasan
Ng Lungsod Ng Maynila Computer Science Department under the College of Engjressdt Technology for
their support and encouragement

WWw.ijrp.org

ISSN: 2708-3578 (Online)

590

%, 1JRP.ORG

ISSN: 2708-3578 (Online)

591

Jeanus Marco Caraig / International Journal of Research Publications (1JRP.ORG)

References

Dai, S., Zhang, Y., Song, W., Wu, F., & Zhang, L. (20E9tation Angle Estimation of JPEG Compressed Image blicCypectrum
Analysis. Electronics, 8(12), 1431.

Gugale, Y. (2018, April). Super sort sorting alg¢fom. In 2018 3rd International Conference for Cogeeice in Technology (12CT) (pp.
1-5). IEEE.

Lawrence, R. (2021, March). Adaptive flash sortingrfiemory-constrained embedded devices. In Proceedifrige 36th Annual ACM
Symposium on Applied Computing (pp. 321-326).

Pereira, S. D., Ashwath, R. B., Rai, S., & Kini,®l.(2021). Super sort algorithm using MPI and CUDAIntelligent Data Engineering
and Analytics (pp. 165-170). Springer, Singapore.

Sara, M. R. A,, Klaib, M. F., & Hasan, M. (2019). EMSN ENHANCED MERGE SORT ALGORITHM BY EARLY CHECKING OF
ALREADY SORTED PARTS. International Journal of Softw&mgineering and Computer Systems, 5(2), 15-25.

Taiwo, O. E., Christianah, A. O., Oluwatobi, A. N., & édnke, K. A. (2020). Comparative Study of Two D&vignd Conquer Sorting
Algorithms: Quicksort and Mergesort. Procedia Comp8tidence, 171, 2532-2540.

Yadav, R., Yadav, R., & Gupta, S. B. (2021). Compeeadtudy of various stable and unstable sortingréttyos. In Atrtificial
Intelligence and Speech Technology (pp. 463-4771C GRess.

Yerram, B., & Bhonagiri, J. K. (2020, July). An EfficieBorting Algorithm for binary data. In 2020 11thdmational Conference on
Computing, Communication and Networking Technologi€CCNT) (pp. 1-4). IEEE.

WWw.ijrp.org

