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Abstract

Dyslipidemia is the main risk factor for atherosclerosis leading to cardiovasculasedisee of the important health
problems in the Asia Pacific region. Several dyslipidemia treatment medaliich as statins and monoclonal antibodies
were considered less effective both from the aspect of cost orsideieffect. The aim of this study is to describe the
potential of lipid nanoparticle-mediated efficient delivery of clustemegularly interspaced short palindromic repeat
(CRISPR) associated protein 9 (CRISPR/Cas9) targeting proprotein convertase subxilisityge 9 (PCSK9) and
angiopoietin-like protein 3 (ANGPTL3) as new therapeutic genomagditodalities for potential long-lasting treatment
of dyslipidemia. The method used in this study is to explore thmtire in the form of systematic reviews, meta-
analysis, and randomized control trials (RCTs) through several search engihes Sciencedirect, Pubmed, and Google
Schoolar in the last 10 yeaiThe outcome of this study is to review the effectiveness of PCBKABGPTL3 inhibition

in lowering cholesterol levels making both genes as a major therapeutt fargthe treatment of dyslipidemia.
Currently, an efficient way to permanently inhibit both genes leas lleveloped using CRISPR-Cas9 genome editing
delivered by lipid nanoparticles (LNPs), the most effective non-virvetg modalities that work specifically on the
liver. A single administration of LNPs-CRISPR/Cas9 in mice produced undetec@BkOFserum levels more than 80%
and a drop of total cholesterol by 35%-40%. Meanwhile, CRISPR/Cas8ngrd®lGPTL3 resulted in a greater decrease
in triglycerides on 7 day post-treatment. As a conclusion, genedittng therapy based on CRISPR/Cas9 lipid
nanoparticles targeting PCSK9 and ANGPTL3 is promising for the treathdypslipidemia.

Keywords: ANGPTL3, CRISPR/Cas9, dyslipidemia, Lipid Nanopeles(LNPs), PCSK9

1. Introduction

Dyslipidemia is a major risk factor for atherosclerosis which can dacisemia in the brain, heart, or legs
and induce cardiovascular disease, one of non-communicable disease whigmp®rtant health problem in
the Asia Pacific Region.[1,2] Dyslipidemia is characterized by high level®w-density lipoprotein
cholesterol (LDL-C), total cholesterol (TC), and triglycerides (TG), or loxglgeof high-density lipoprotein
cholesterol (HDL-C) in the blood.[3] In Asian countries such &in& dyslipidemia is the second most
common metabolic syndrome component after hypertension.[4] Accotdindgje WHO statistics, the
prevalence of dyslipidemia in adults aged >25 years in Indonesigheorbasis of total cholesterol
concentration 160 mg/dL, was about 36%.[5] A study in a small populatiowed that the prevalence of
dyslipidemia in all ethnic groups in Indonesia was between 9.0% and &h%limangkabau ethnic group as
the highest total plasma cholesterol and plasma LDL-C and Sundanese as thplésmes HDL-C.[6]
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Hyperlipidemia is often a lifelong disease process that can actually be edamasl. However, if
hyperlipidemia is left untreated, the disease progresses progressively ratebhdato severe underlying
vascular disease processes, which can prove fatal.[7] Various complicatiomérexited hyperlipidemia
include coronary artery disease, peripheral artery disease, cerebrovascular acaimamgsms, type |l
diabetes, high blood pressure, and even death. So that effective and dfiseibment of hyperlipidemia to
prevent the progression of this disease is certainly very nece8k&asled on clinical outcome studies, LDL-
C levels have been shown to be closely related to cardiovascular diseagefdgréhLDL-C is the main
target in the management of dyslipidemia to prevent cardiovascular diseafe §ti@dftion, Serine protease
proprotein subtilisin/kexin convertase type 9 (PCSK9), a majaulaty of LDL metabolism which can
increase LDL receptor (LDLR) degradation, is also a potential target for idgshja therapy.[11] [12] When
PCSKOQ is inhibited, LDLR expression and activity are increased, resulting inesadedn LDL-C levels.[13]
In contrast to angiopoietin-like 3 (ANGPTL3), which has been shown fbifrthe activity of Lipoprotein
lipase (LPL) and endothelial lipase (EL) resulting in an increase in plasrantmtions of TG, LDL-C and
HDL-C.[14] Thus, inhibition of ANGPTL3 is also considered a promisihgrmacological target for the
treatment of dyslipidemia.[15]

Until now, various drugs and therapies for dyslipidemia to reduce LDévEls have been developed.
There are several lipid lowering agents, such as statins, nicotinic acidtediband bile acid sequestrants,[9]
but statins are the preferred medical treatment for lowering LDL-C agexthieve the optimum target of
LDL-C levels.[10] However, despite receiving intensive statin therapy,ynmatients cannot achieve
optimum lipid levels.[16] On the other hand, high-dose statins caedse the incidence and severity of side
effects such as muscle toxicity.[17] Alternatively, inhibition of PCSK9 wittnoclonal antibodies (mAbs)
has been approved as a second-line treatment in at-risk patients wiod aeimeve optimal target LDC-
levels despite maximally tolerated statin therapy or for patients with statin intol¢t8nt@l However,
mAbs show a relatively short half-life in vivo and should bpliad frequently and highly costs if given long
term.[13]

Gene editing technology is a potentially powerful therapeutic tool that cangbyearsd efficiently trim,
cut, replace, or insert DNA or RNA sequences.[20,21] One of the genegetditinnologies that has been
developed and won the 2020 Nobel Prize in Chemistry is clustered regotarigpaced short palindromic
repeat (CRISPR) associated protein 9 (CRISPR/Cas9).[21] It consist® @bmponents that can simplify
genome editing procedures, namely using single-guide RNA (sgRiNAgcognize target DNA, and Cas9
nuclease activity to introduce site-specific double-strand breaks (RSB target gene loci.[22] Recently,
Cas 9 nuclease and sgRNA are delivered to target cells via nonviral nanodgsiteranoparticles (LNPs),
who have a favorable safety profile and have been developed for deliveag®fplasmid DNA, mRNA, and
ribonucleoproteins (RNPs).[23-25] Several studies reported that the use sfHasPsuccessfully delivered
CRISPR-Cas9 in both the RNP and mRNA formats.[26-29] mRIRIivery considered very promising in in
vivo genome editing applications because of a transient and non-integragedXpeession feature.

Lately, the use of bioreducible LNPs for the codelivery of Cas9 mRNAg&MNA, demonstrated highly
efficient in vitro genome editing, as well as rapid knockdown of the PGS3i¢8sterol-regulating gene in
vivo, highlighting the potential of this delivery approach.[30] dddition, a lipid nanoparticle delivery
platform carrying Cas9 mRNA and guide RNA for CRISPR/Chs8ed genome editing of ANGPTL3 in
vivo, was also reported to mediate ANGPTL3 gene knockdown specificallgféiciently in theliver of wild-
type C57BL/ 6 mice, resulting in profound reductions in serum ANGPprotein, LDL-C, and TG
levels.[20] Therefore, this study aims to describe the potential of lipid nadimtganediated efficient
delivery of CRISPR/Cas9 Genome Editing as new therapeutic modalitiesottkdut genes related to
cardiovascular disease, PCSK9 and ANGPLT3, as potential long-lasting treatmgsiippfiemia.
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2. Methods

The method used in this study is to explore the literature in the fbsystematic reviews, meta-analysis,
and randomized control trials (RCTs) with a level of evidence 1A-2C ghreaveral search engines such as
Sciencedirect, Pubmed, and Google Schoolar using the keywords “ANGPTL3”, “CRISPR/Cas9”,
“dyslipidemia”, “Lipid nanoparticles(LNPs)”, and “PCSK9”. To get specific search results, “Mesh Database”
and Boolean Operato(SAND”, “OR”, “NOT”) are used when searching literature. The literature search was
limited to studies published in the last 10 years and available in Englistianesian.

3. Resultsand Discussion
3.1.The Role of PCSK9 and lIts Inhibition as a Management of Dyslipidemia

Dyslipidemia is a condition of lipid imbalance characterized by high levels téstkool, TG, LDL-C, and
low levels of HDL. The main focus of lipid treatment is to prevemmigcations from atherosclerosis, which
can lead to many cardiovascular disease as an important risk factgslipfdg#mia.[31] LDL-C has been
recommended as the main therapeutic target in cardiovascular disease.[32]

Recent studies have shown that PCSK9 plays a significant role in theotisstabf triglyceride-rich
lipoprotein through its interaction with the LDLR.[33] PCSK9 is a renof a serine protease that has the
ability to hydrolyze peptide bonds for activation.[34] PCSK9 is kndwvrbe a major regulator of LDL
metabolism.[11] LDLR is reduced by PCSK9 in hepatocytes through metatsoiid degradation.[34]

Figure 1: Mechanism and role of PCK9 in low-density lipoprotein-cholesterol (I)lmetabolism.[34]

Under normal circumstances, the LDL-C complex and LDLR are endocytosdioebgndosome. The
affinity of LDL-C to LDLR can be reduced by the acidic environimafithe endosome which can trigger the
recycling of LDL-C to return to the plasma membrane. The recychindptaR is inhibited by the binding of
PCSK?9 on the hepatocyte cell surface. LDLR is then directed to lyssstor degradation thereby reducing
the number of LDLR on the cell surface.[34] The mechanism &KBdnhibition is expected to increase the
amount of LDLR available on the cell surface and increase the absoppti@i -C into cells so that it can
reduce LDL-C levels in the blood circulation.[33]

PCSK9 is expressed both intracellularly and in the circulation. There are seveed$ fargPCSK9
inhibition. These modalities include inhibition of production by gene silencimgugh antisense
oligonucleotides or small interfering RNAs; prevention of binding of PC8K2DLR using monoclonal
antibodies, mimetic peptides or adnectin, inhibition of PCSK autocatalytic sites andrggigeswth factor-
like repeat A (EGF-A).[34,35] Recent developments have shown tha thes more efficient way to
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permanently inhibit PCSK9. This method is carried out through arviib mechanism using the
CRISPR/Cas9 system.[36,37]

3.2.The Role of ANGPTL3 and Its Inhibition as a Management of Dyslipi@em

ANGPTL3 is a member of the angiopoietin-like protein (ANGPTLS) famwihich is expressed in the liver
and has been recognized as an important regulator of lipid metabolism. ANG&Tist of 8 members and
all play an important role in plasma lipid metabolism. Compared to the ejzgg of ANGPTLs, ANGPTL3
has recently attracted the attention of researchers in recent years.[15] Plasnaf [B&eénd LDL-C can be
increased by increasing ANGPTL3. Therefore, it is possible to reduce ubks lef TG, LDL-C, and
atherosclerotic lesion size by inhibiting ANGPTL3. This inhibitory mechanismpeated to reduce the risk
of dyslipidemia and cardiovascular disease.[15,38]

The mechanism of ANGPTL3 inhibition works by activating lipoprotein ligas®.) in peripheral tissues
which plays a role in hydrolyzing TG carried by VLDL and chylomic¢@M) particles in the circulation. In
addition, ANGPTL3 also activates endothelial lipase (EL) and prevents the se@ktioglyceride-rich
lipoproteins (TLRs) by the liver. All of these mechanisms result inedeser of TG and total cholesterol level.
[33,39] In addition to the previous therapy for dyslipidemia, wimedre focused on lowering LDL-C levels,
there are currently pharmacological approaches targeting other lipoproteired,which is TG.[40]

Compared to PCSK9 which is known to be more potent in lowering CDévels in the blood, ANGPTL3
targeted therapy is known to be more potent in lowering TG levels. Interestihglynhibition of both
ANGPTL3 and PCSK9 did not show a synergistic or additive effect. Thibeanfluenced by differences in
lipid metabolism pathways between species.[41]Several ways to inhibit ANGPTIE3he@n developed.
Among them are inhibiting antibodies, genome editing to trigger loss ofidantiutations at the gene level
and antisense oligonucleotides to inhibit the translation of ANGPTL3 mesdeNgerCurrently, a way to
permanently inhibit ANGPTL3 has been developed, namely througlangene editing with CRISPR/Cas9
technology.[41]

3.3.CRISPR/Ca9

The protein nuclease system (CRISPR/Cas9) is a genome editing toombyirrg or adding DNA
sequences for various biomedical applications. The CRISPR/Cas9 systenibasualeoprotein complex
(RNP) consisting of the Cas9 protein and a sgRNA.[36@&9 can cleave DNA sequences through
guidance by sgRNA which can identify specific target genomic loci. RESPR/Cas9 system has been
shown to be successful in inhibiting PCSK9 and recently completed a Iplhas@cal trial on the treatment
of hyperlipidemia and successfully treat dyslipidemia in adult mic&7243,44] Compared with
conventional antisense oligonucleotide (ASO) or temporary antibody thehepZas9 CRISPR system can
induce permanent loss function which can produce long-term therapéfetits and can work more safely,
specifically, and efficiently.[20]

Delivery modalities in CRISPR/Cas9 include non-viral vectors, viral vecam,physical delivery. This
viral modality in delivering CRISPR/Cas9 is limited and has a minimal loadcitgd45] Meanwhile,
physical delivery such as electroporation is time-consuming and labosiirgeso its application is only to a
small number of species due to its limitations. Recently, non-viral nanedels/known to efficiently deliver
CRISPR/Cas9 in vitro and in vivo.[45] The challenge for CRISPR/@agdtering cells is due to the large
size of the protein molecule (cas9 genetic size -4.5kb) and poor stabityahocarrier is the ideal delivery
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modality for CRISPR/Cas9. Some of the nanomaterials that havedbeelvped include lipid LNPs, cationic
polymers, vesicles, and gold nanoparticles4Z%-

One of the advantages of LNPs over others is that they are saics&debdor delivery of Cas9 plasmid
DNA, mRNA, and RNPs. LNPs are said to be the most efficacious &N A delivery carriers in humans
and experimental animals. LNPs itself consist of dendrimer lipid raaticles (DLNPs), stable nucleic acid
lipid particles (SNALPs), and lipid-like nanoparticles (LLNPs). CRISPR/Cas@adsvik to be applicable to
three different types of LNPs which allows modified LNPs to be ablagally edit cell DNA in different
tissues.[20,23,24,25]

3.4.CRISPR/Cas9 lipid nanoparticles (LNPs) as a Promising Therdpystipidemia
3.4.1.Lipid nanoparticles delivery of CRISPR/Cas9 development

A hindrance in CRISPR/Cas9 mediated genome editing is ineffective getivgenome editing proteins
caused by instability and low membrane permeability. This cause@ak9 protein and sgRNA is not
naturally exist within mammalians and cell permeable.[26,30] Widedyd ugal vectors recently arise some
concerns such as tumorigenesis, mutagenesis, immunogergsitycted package capacity, large size of Cas9
and off target effects. As there is many limitations within viral delivérg,delivery has shifted to non-viral
delivery with advantage such as safety, simplicity, and flexibility4@B,

In most recent study, LNPs was recognized as currently most effectireaapmf RNA delivery carriers
in preclinical models also in human.[50,51] LNPs delivery is combingggatively charged nucleic acids with
positively charged lipids through electrostatic interactions forming LNP& precedence of cationic
liposome is the interaction with negatively charged cell membrane resultingadier nucleic acids
encapsulating process. LNPs preserve nucleic acids from nuclease alydimfiimate target cells by means
of endocytosis or macro-pinocytosis. Common available lipids.fegiamine 3000 and RNAIMAX, may be
immediately used to deliver RNPs to carry out gene editing.[26,52]

But, it is commonly believed that LNPs preferably modified for CasINAHRgRNA RNPs because
consist of complexation of cationic lipids and anionic RNPs.[53] Aystvats conducted by Wang et al. using
12 bioreducible cationic lipids combined with anionic Cas9: sgRNA complexdacilitates endosome
escape of protein. Endosomal escape further contributes to delivering CagdBeinmtacleus for genome
editing. Endosomal escape was also improved by integrating reducibleiddisbifinds towards lipid
hydrophobic tail.[21] Five out of 12 lipids success deliver Cas9/sgRNplex with effectivity more than
50% in rodents brain.[26] Lipid mediated Cas9mRNA delivery has provenittireaches target more
accurately than lentivirus-mediated Cas9 delivery.[54] Also Cas9 mRNA odhetilaims reducing
mutagenesis, transient effects, reaching target cells more accurately @eedredmplexity compare to Cas9
plasmid.[53]

Liu et al. demonstrated 7 of 32 lipids efficiently delivering Cas9 mRIgRNA to lowering green
fluorescent protein (GFP) expression. BAMEA-O16B, a leading lipid, appeamsging with efficieny 90%
knocks out GFP expression of HEK (human embryonic kidney) c¢Hfis. process occurs during 24h post
administration. Further the study selected HPV18 an essential gene that triggeed cancer as a target
cells. BAMEA-016B/Cas9 mRNA/sgHPV18 was significantly prohibited Hejrawth rather than just
combination of Cas9 mRNA/sgHPV18.[30]

In the development of therapeutic gene editing to medicate amyloidosis, moredfffanbreakdown of
serum transthyretin (TTR) levels as target protein for 12 monthsifongt model was achieved by lipid
nanoparticles based CRISPR/Cas9 delivery. The editing capacity is cumulative adhatiplg LNPS doses
and bialegradable lipid and CRISPR/Cas9 element are temporary and well tolerated.g2djstbvery of
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CRISPR/Cas9 lipid nanoparticles based delivery in cancer therapies are pro@isingingle intracerebral
injection of CRISPR/Cas9 able to editing 70% gene against polo like kin&deKH)( in orthotopic
glioblastoma and intraperitoneal injections able to editing 80% gene against PLKéarianotumors.[55]
Dopamine signaling and relieving Parkinson’s disease related symptoms effect was increased by single
injection of lipid nanoparticles based CRISPR/Cas9 delivery into brain richndoprgic neuron area.[26]
Modification of LNPs, DLNPs, capable to recover dystrophin expressialuéhenne muscular dystrophy
(DMD) mice.[36]

Despite many promising progress in LNPs delivery of CRISPR/Cas9, ftharsd effective delivery has
become attention that needs to considered in future research. A research by $thhefng CRISPR/Cas9
for sight restoration in blind rd1 mice, shows that there is unexpggdiéggh number of single-nucleotide
variants (SNV) denoting high number of mutations in a mouse modgnaf therapy. Future studies needs to
increase the accuracy of CRISPR/Cas9 and decrease the risk of mutgijbis.[

3.4.2.Lipid nanoparticles delivery of CRISPR/Cas9 targeting PCSK9 as a hhef&yslipidemia

CRISPR/Cas9 targeting PCSK9 became a new trend. PCSK9 will stimulatesnigéategradation of
LDLR, and PCSK9 function loss will results in low levels of LDL-@J3CRISPR/Cas9 expected to treats
hyperlipidemia and it has ability of modifying genome to permanetgtyease cholesterol levels.[59,60] The
development started with utilization CRISPR/Cas9 adenovirus delivery imerliwérs. The study shows that
by disrupting PCSK9 genes, cholesterol level is reduced. PCSK9 blood levetieatsase significantly in
mice with humanized livers indicating it safety and effectiveness in redusmgrhPCSKO levels.[61] But as
mentioned before, despite viral vectors have delivery efficiency, their biityeés still maintained as
problem. Adenovirus also can provoke deleterious immune resporesdodils prolonged expression.
Mutagenesis can be produced by Adenovirus in just 3 to 4 Asstady by Chadwick et al. used PCSK9 base
editing method rather than breaking double strand that could result in megagéBase editor delivered into
mice could introduce site-spesific nonsense mutations towards PCSK9 genPCEK® protein levels
reduced by more than 50% and plasma cholesterol levels reduced byO3Pfrget mutagenesis and
cytosineto-thymine edits cannot be found. The result shows promisingibplity prolonged and lifelong
reduction of dyslipidemia as cardiovascular risk.[62]

The development shifts to use of LNPs in recent research.[54] Thentus injection of BAMEA-
016B/Cas9 mRNA-sgRNA has effectively decrease 20% of PCSK9 serugentwtion in treated
mouse.[30] Yin et al. developed LNPs delivery of CRISPR/Cas9 with ageitp inhibiting PCSK9 gene for
hypercholesterolemia treatment. The study shows that a single adminisbfdtidRs-CRISPR/Cas9 in mice
produced undetectable PCSK9 serum levels, more than 80% editindiiettand a drop of total cholesterol
by 35%-40%.[54] Study was proven that loss of function mutatio®Ci8K9 were connected with 15-28%
reduction of LDL-C even in patients that cannot be treated with st&jn.[6
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Figure 2: CRISPR/Cas9 delivered by lipid nanoparticles in mice. CRISPR/Cas9 effect sha®@SK9
serum level, triglycerides, total cholesterol, and ALT. In CRISPR/Cas9 gotagma cholesterol level

reduced up to 35-40% and no significant differences in triglycerideebatno virus, GFP, and
CRISPR/Cas9 group.[61]

3.4.3.Lipid nanoparticles delivery of CRISPR/Cas9 targeting ANGPTL3 as a phefdyslipidemia

ANGPTL3 gene was considered as another target of dyslipidemia therapghth@iRISPR/Cas9 gene
editing. ANGPTL3 considers as an ideal target for gene editing because natuddl fimsction mutations in
ANGPTL3 preserve the body against risk of coronary artery diseaBeutvileveloping serious side effect
either in homzygous or compound heterozygous form. The sergudhent, ANGPTLs expressed by liver
hepatocytes and it is secreted into the bloodstream marking its acces§ibilitgrious deliver methods.
Inactivating mutations, an easier method of gene editing, is theembisite of ANGPTL3 inhibition.[64]

Chadwick et al conducted the first study using CRISPR/Cas9 base editingetoABNIGPTL3. A variation
of CRISPR/Cas9 genome editing method called base editing used as inetivodnto promote loss of
function mutations into ANGPTL3 in a study by Chadwick et al., BE3-ANGPifjected using adenoviral
vectors resulted a median editing rate of 35% at 7th day. CRISPR/CastntgaydGPTL3 resulted in
greater decrease in triglycerides on 7 day post-treatment rather th8RRIRas9 targeting PCSK9. BE3-
ANGPTL3 reduced TG (56%) and cholesterol (51%) compared to BE3-conthyipierlipidemic LDLR-

knockout mice. Thus in vivo base editing of ANGPTL3 established as a potérdtabg to treat patients
with atherogenic dyslipidemia.[65]
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Figure 3: CRISPR/Cas9 delivered by lipid nanopatrticles illustration to target ANGPTL3.[20]

The newly founding delivery method by nanoparticles, CRISPR/Cals@&rkd by LNPs able to editing
ANGPTL3 gene in the liver of wild-type C57BL/6 mice inducing loweringserum ANGPTL3 protein
(65,2%), LDL-C (56,8%), and TG (29,4%) levels. The gene editing effect taste st least 100 days after a
3mg/kg single dose administration. But continued observation proves thatrtbmig editing effect could
still be detected up to 150 day after single injection. No off targeéagenesis found at 9 predicted sites and
liver toxicity is not found. The study showing 306-O12B, synthetid bioreducible lipidoid, is more
effective than MC-3 LNPS (gold standard LNPs approved by FDA) ADpugh there is some issues to be
addresed in preclinical animal models such as it needs more study about eiff#@utpgenesis,
CRISPR/Cas9 delivery through lipid nanoparticles is a promising therapystibidemia.

4. Conclusions

As a therapy for dyslipidemia, CRISPR/Cas9 lipid nanoparticle-based delh@med results in lowering
LDL-C by targeting PCSK9 and showed greater reduction in triglycebigéargeting ANGPTL3 rather than
PCSK9. Thus, genome editing therapy based on CRISPR/Cas9 lipidanéaiep targeting PCSK9 and
ANGPTL3 is promising for the treatment of dyslipidemia. [30,2348,65] Despite many promising progress
in lipid nanoparticles delivery of CRISPR/Cas9, future studies needs tidewts about the safety and
effectiveness of lipid nanoparticles delivery of CRISPR/Cas9.
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