&%, IJRP.ORG

Inte escarch Public
ISSN: 2708-3578 (Online)

164

Enhancement of Dijkstra Algorithm for Finding OpahPath

Alec Zehst Tiong Celeste June Panganihaviark Christopher BlancoRichard
Regala Dan Michael Cortez

:azmtiong2018@plm.edu.ph
:Computer Science Department, College of EngineernmijT@chnology
Pamantasan ng Lungsod ng Maynila (University ofGitg of Manila)
Intramuros, Manila 1002, Philippines

Abstract

The Dijkstra algorithm is a common method used when sokhiogtest path problems. It is a
graph-based method that compares node distances, sedestoitest subsequent node, and generates
an ideal path. However, it is seen that the methodgiea with memory utilization, particularly when
working with substantial amounts of data or graphs. The parpbthis research work is to improve the
algorithm to tackle the current problem. The enhancemettcomplished by providing an approach in
which the two closest nodes are combined in eachideraVith this, the conclusion of the study is that
the enhanced Dijkstra algorithm, with the application of noo®bination, was able to reduce the
memory usage in comparison to the existing Dijkstra algorithm.

Keywords: Dijkstra Algorithm; Node Combination Algorithm; Mery Consumption

1. Introduction

People travel from one location to another to doréetyaof activities. From each house, a person can go to
the market to buy groceries, a student can go to sabroatfdemic activities, and an employee goes to a scpmpa
to earn a living. People can memorize each path thélyrgagh for them to continually visit a place on npléi
occasions. On the other hand, people tend to be lost wiolving from one location to another due to the
limitations of the human intellect. The developmeninatbile navigation tools such as Waze and Google Maps
began, assisting users not only in locating their chosatidms, but also in providing accurate instructions on
how to go to their destinations correctly.

The Dijkstra algorithm was created by Edsger Dijkstra, a iDaetimputer scientist. It can be used for
pathfinding between nodes in a graph, such as a road nketwath. It needs parameters for the origin and
destination locations. The Dijkstra algorithm is a well-knomethod for determining optimum pathways.
According to Qing et al. (2017) it is a popular shortest rmethod. The Dijkstra algorithm is simple to develop,
runs consistently, and adapts well to topology changesddition, Wayahdi et al. (2021) said that it is thasin
effective method for resolving the simple shortest patblpm. Dijkstra's algorithm is one of the greedy strategi
used to solve shortest path problems. The proceduredaagdo Gbadamosi et al. (2020), is used to determine
the shortest paths to the vertices of a graph inrither @f their distance from a specific source. Even though th
traditional Dijkstra's Algorithm solves the shortest patbblem, it may not be the best option in someatitns
due to a variety of factors.

1JRP 2022, 102(1), 164-170; doi:.10.47119/1JRP1001021620223299 WWw.ijrp.org



Alec Zehst M. Tiong / International Journal of Research Publications (IJRP.ORG) ‘.\ JJ RP.ORG

ISSN: 2708-3578 (Online)

165

2. Existing Dijkstra Algorithm
2.1. Problem of Existing Dijkstra Algorithm

When utilizing applications on mobile devices, consumerssider the size of the application itself to
determine whether it requires a lot of storage. If theieguan's size is large and their devices' storage dgpaci
is limited, the application's performance may suffer. Assallt, the process is slowed. Memory utilization is
another issue with the Dijkstra Algorithm. According to Fital. (2018), calculations, which can be conducted
in a period when checking one destination to anothewifireult to conduct when finding ideal output. That is
the reason there is quite a challenge when dealing thithitask of determining the shortest path, which is
considered as an essential case study in computer sciemcklition, Yalin et al. (2017) said that the algorithm
has features which have larger time complexity and scapeyith lower efficiency of the searching process.
People also calculate the amount of data produced by the mrogemple dislike it when programs generate a
significant quantity of data, sacrificing the storageacity of their devices. Fitro et al. (2018) said that th&dhia
technique requires memory space as points keep being @dveith each iteration. It is considered a
disadvantage when looking for the shortest path, espewigh large networks. Hence, the researchers propose
a modified version of the enhanced Dijkstra Algorithm ai@Xet.al (2017) to solve the existing problem when it
comes to memory usage.

2.2. Pseudocode of Dijkstra Algorithm

Load Data (Distances, points).
Initialization. Mark the starting nodeand add it intcs.
Traver se the nodes ifV-S and select all the adjacent nodes as the candidateéttimte nodes.
Select the node with the smallest number among the candidate interfeed@es and add it in®set.
Regard as the new intermediate nodepeat (3) and (4) and choose the smallest numberedjrfoot®
the adjacent nodes. Update the distance between the sodecg and the noge
If DIST(j) > DIST(i) + C(i,j), modify DIST(j) to DIST(j) = DIST(i) + C(i,j), and add nodg
into S set.
Repeat (3)-(5) n-1 times. All the shortest paths from the sourodento the goal node are stored in
DI ST(X) when the search iteration traverses to the goal.node

3. Enhanced Dijkstra Algorithm
3.1. Enhancement of the Algorithm

The Dijkstra algorithm does not handle memory usage wéderWooking for the shortest route from a large
graph, Dijkstra's algorithm consumes a lot of memory to kieegoints traversed over each iteration. For this
matter, the researchers would introduce another mettaidedssens the memory usage while using Dijkstra
Algorithm. The researchers intended to enhance tHestiij algorithm using the Node Combination Approach.
According to Fitro et al. (2018), by the term itself, comation of two nearest nodes is done. These nodes are
expressed by the vertex weights between the two. By mettggngpdes with the least distance into a single node,
this node combination technique saves memory on eaaliagterlt is supported by Amaliah et al. (2016), stating
that deleting nodes after merging is an efficient way efmory utilization than complying with the traditional
way of using Dijkstra Algorithm.

WWw.ijrp.org



Alec Zehst M. Tiong / International Journal of Research Publications (IJRP.ORG) @ JJ RP.ORG

ISSN: 2708-3578 (Online)

166

3.2. Pseudocode of Enhanced Algorithm

Initialization of graph, start and goal node
Initialization of toDelete, path, predecessor

while start has more than 1 child:
place children of start to a temporary graph
for each child and weight of start:
if child is not the goal:
for each grandchild and weight of grandchild of start:

save the total of weight of child amelght of grandchild in path
place child as predecessor of grandchild
add child to toDelete

for node in toDelete:
if the node is not in path:
pop the node in the temporary graph
if node is in predecessor:
pop the node in the predecessor

clear start of graph

for node and weight of path:
insert new children and weight of childrentaefts

Clear path, temporary graph, and toDelete

final answer = goal

add the nodes in the predecessor to the final answer
add the start node in the final answer

reverse the final answer

output final answer

4. Methodology

This study employs an experimental research design. Tleigrobsdesign was adopted by the researchers to
keep track of the variables that could influence the studgtsome. This type of research design is used to find
the difference in the results when the node combinatilgorithm is included in the enhanced Dijkstra
Algorithm.

The use of experimental research allows researchdestonstrate the relationship between the variables in
the study. Independent variables are monitored in ordeato low they may influence dependent variables.
With this explanation in mind, performing this research thraexgerimental study is an adaptive decision that
aids the researchers in fixing the current problerh@fijkstra Algorithm.

Other resources were also used within the study. This inctudie® articles, journals, and existing research.
With these resources, the researchers formulatedreodotogy that best fit the study. These resources usze
as references in collecting data and producing solutiosslving the problem of the algorithm. As a restig t

WWw.ijrp.org



Alec Zehst M. Tiong / International Journal of Research Publications (IJRP.ORG) ‘.\ IJRP.ORG

study's application is dependent on these resources, allavitige algorithm to be improved by incorporating
the idea of node combination.

4.1. Adding Node Combination Algorithm to the Enhanced Dijkstra Allgori

The Node Combination Approach is the method that thearehers planned to use to improve the Dijkstra
algorithm. According to Fitro et al. (2018), by the termlitssombination of two nearest nodes is done. These
nodes are expressed by the vertex weights between thBywoerging the nodes with the least distance into a
single node, this node combination technique saves memagobniteration.

4.2. Combining the weight of the child node and the grandchild node

Before starting the process of combining nodes, a toDidéeteill be initialized that will contain the nodes
identified the child node excluding the goal node. In thege®of traversing through each node in a specific
path, the deletion of the child nodes will be done aftecking if the child node is the goal node. Then it will
check if the node to delete is in the path. If the nod®tisn the path, then deletion of nodes inside the to®elet
should take place. After the deletion of nodes, changgsehavithin the value of the child nodes and the weights
which are the sum of the previous child and grandchhe. [&ist step is the clearing of the nodes inside the path
temporary path, and toDelete lists.

4.2.1. Pseudocode of Node Combination
for node in toDelete:
if the node is not in path:
pop the node in the temporary graph

clear start of graph

for node and weight of path:
insert new children and weight of childrentafts

Clear path, temporary graph, and toDelete

4.2.2. Graph of nodes and distances

Fig. 1. lllustration of a graph of nodes with theirtdices

WWw.ijrp.org

ISSN: 2708-3578 (Online)

167



Alec Zehst M. Tiong / International Journal of Research Publications (IJRP.ORG) @ JJ RP.ORG

ISSN: 2708-3578 (Online)

168

Figure 1 is an example diagram that will be used for stusly. It shows a graph of nodes and their
corresponding distances from each other. It containgahent node<hild nodes, and the grandchild nodes. The
grandchild node stands for the child of the child nodes. diagram is based on the studylef et.al. (2011),
Finding the shortest paths by node combination.

Table 1. Possible Paths with corresponding Totalabies

Path No. Nodes Distance

1 a-f-e-h 8+5+6 =19m
2 a-b-e-h 5+10+6 = 21m
3 a-c-e-h 8+10+6 = 24m
4 a-c-g-h 8+10+3 = 21m
5 a-d-g-h 10+7+3 = 20m

Table 1 above displays all of the pathways that maydmten using the existing graph. There are a total of 5
pathways that may be formed, each with a different distaRath 1 is 19m long and contains nodes A-F-E-H.
Path 2 is 21m long and has nodes A-B-E-H. Path 3 haalg#dh length of 24m, with nodes A-C-E-H. Path 4
has a total path length of 21m, with nodes A-C-G-H. Bdths a total distance of 20m and nodes A-D-G-H. Path
1 has the shortest distance of all the pathwaysestdadm the graph, with 19m, making it the shortest a
optimum path of the graph.

4.2.3. Comparing Existing Algorithm with Enhanced Dijkstra Algorithrterms of Memory Consumption
To determine the memory allocated for the process#seddlgorithms, the tracemallagdule in Python’s
library will be used, specifically to identify the stagimemory and the peak memory. The researchers use the

values to know the memory usage by subtracting themeakory value to the starting memory value. Then, the
differences will be compared to see which has the smallee.

5. Results and Discussion

5.2. Results in Existing Algorithm

Shortest distance is 19
Pptamal path is [*a*, '£Y, "a', "h']
>>>

Fig. 2 The result after running the Traditionalk®tfa Algorithm while using the graph at Fig. 1
Figure 2 shows that the Traditional Algorithm successfullyntbthe optimal path with the shortest distance.

Among all paths that can be chosen within the giveplyat Fig 1, the Traditional Dijkstra Algorithm stii@se
Path 1 as the optimum path with a total distance of 19m.

WWw.ijrp.org



Alec Zehst M. Tiong / International Journal of Research Publications (IJRP.ORG) @ JJ RP.ORG

ISSN: 2708-3578 (Online)

169

5.3. Results in the Enhanced Dijkstra Algorithm

}}
L]

e

answer: [Z;ay 2EY,
>>>

Geaph: {"a': {"h%: 19
L] " lhl‘

Fig. 3 The result after running Dijkstra Algorithmith the application of Node Combination while usthg graph at Fig. 1

Figure 3 shows that the Enhanced Dijkstra Algorithm chosie Pas the optimum path among all existing
paths within the graph. Within the figure shows the stadienA and the goal node H with a total weight of 19,
which is the total distance of the chosen path. Tihsvs that the enhanced algorithm successfully chose the
optimum path in terms of distance.

5.4. Comparison of Existing Algorithm and Enhanced Dijkstra Atbori

Table 2. Analysis of Memory Consumption through the bETracemalloc

Algorithm Current Size Peak Size Difference
Existing Dijkstra 3456 4451 995
Enhanced Dijkstra 4448 5277 829

Table 2 shows the analysis of memory consumption oéxisting and enhanced Dijkstra Algorithm where
the researchers use the current size and peak sizd tbdidifference to know the used memory of the algorith
The existing algorithm’s current size amounted to 3456 bytes and its peak size amounted to 4451 bytes, giving a
difference of 995 bytes. Whereas the enhanced algorithm’s current size amounted to 4448 bytes, and its peak size
amounted to 5277 bytes, giving a difference of 829 bytes pQting the difference between the current and peak
size is done in order to show the gap of the memoryuroned within the whole process in each algorithm. It can
be interpreted that the enhanced Dijkstra algorithm sucdgs&duced the memory consumed in comparison to
the existing algorithm. This result was obtained becaugeedfiplementation of the node combination method,
which aims to reduce unnecessary nodes while lookingpéooptimum path from the start until the goal node.

Table 3. Analysis of Memory Consumption through the dsMemory Profiler

Algorithm Kibibyte Megabyte
Existing Dijkstra 16632 17.0311685243
Enhanced Dijkstra 16612 17.0106877379

Another tool that was used to check the memory usagecbfagorithm is the Memory Profiler. This tool
checks the amount of kibibytes and the megabytes used bigtiréghm while running the program. To explain
the value of kibibyte and megabyfieKiB is equivalent to 1024 bytes, whereasHhis equivalent to 1,000,000
bytes. As shown above, Table 3 contains the total quaftKibibyte and megabyte after the graph had been
processed by the existing and the enhanced DijkstrathigoiThe existing algorithm generated 16632 kibibytes,

WWw.ijrp.org



Alec Zehst M. Tiong / International Journal of Research Publications (IJRP.ORG) @ IJ RP.ORG

ISSN: 2708-3578 (Online)

170

whereas the enhanced algorithm generated 16612 kibibytes, imglitett the existing algorithm is 20 kibibytes
larger than the enhanced algorithm. Another distinctionhes megabyte generated by the old method
(17.0311685243) against the megabyte produced by the upgraded algorithm @7/3¥9%. The existing
algorithm is 0.0204807864 megabytes larger than the enhanced algorithom, tHerenhanced algorithm, though
with a small margin, reduces the memory consumptiorringtef kibibyte and megabyte when compared to the
existing Dijkstra algorithm.

6. Conclusion
Following the completion of the study, the researchansdraw the following conclusions:

e The enhanced algorithm with the application of node contibmavas able to find the optimal path
considering other possible paths with their correspondirigratiss.

e That combination of nodes in Dijkstra Algorithm can heithwhe reductiorof memory consumption
when looking for the optimal path based on distance.

7. Recommendation

Based on the findings of this study, the researchersezammmend the following:

e Using data that exists from actual locations

e Find out what other methods researchers can use toisearifaffect the results

e Use more complex graphs, e.g., graphs that contain a tangdoer of nodes and a larger number of weights
e Use different types of graphs that may affect the perfocmafithe algorithm

Acknowledgements

The researchers are grateful to God for providing wisdad direction, to the professors of Pamantasan ng
Lungsod ng Maynila for their support and teachings; to thesis adviser, who guided and assisted them in their
research writing; and most importantly, to their fanfolyproviding inspiration to push through during the busiest
days of their research; and their friends who have eagedrthem in their endeavors, especially China Marie
Lao, Clarissa Faye Gamboa, Enrico Sebastian Digman, dmd Alfred Velasco for providing assistance in
completing their study.

Refer ences

Qing, G., Zheng, Z., & Yue, X. (2017, May). Path-piamg of automated guided vehicle based on improvigdsa algorithm. In 2017 29th
Chinese control and decision conference (CCDC) (pp8+/1143). IEEE.

Wayahdi, M. R., Ginting, S. H. N., & Syahputra, DO24). Greedy, AStar, and Dijkstra’s Algorithms in Finding Shortest Path. International
Journal of Advances in Data and Information Syste(i), 4552.

Gbadamosi, O. A& Aremu, D. R. (2020, March). Design of a Modified Dijkstra’s Algorithm for finding alternate routes for shortest-path
problems with huge costs. In 2020 International Canrfee in Mathematics, Computer Engineering and Comgaience (ICMCECS)
(pp. 1-6). IEEE.

Fitro, A., P Sulistio Ilham, A., B Saeful, O., & Fidianata, |. (2018). Shortest path finding in geograplntarmation systems using node
combination and dijkstra algorithm. SHORTEST PATH FING IN GEOGRAPHICAL INFORMATION SYSTEMS USING NODE
COMBINATION AND DIJKSTRA ALGORITHM, 9(2), 755760.

Yalin, C., Liyang, Z., Longbiao, Z., Xiaojiang, &,Heng, W. (2017). Research on path planing of parkygiem based on the improved
dijkstra algorithm. Modern Manufacturing Engineeridg3(8), 63.

Amaliah, B., Fatichah, C., & Riptianingdyah, O. (20I@NDING THE SHORTEST PATHS AMONG CITIES IN JAVA ISLAND SING
NODE COMBINATION BASED ON DIJKSTRA ALGORITHM. Internationalournal on Smart Sensing & Intelligent Systems, 9(4).

Lu, X., & Camitz, M. (2011). Finding the shortest paltysnode combination. Applied Mathematics and Coiapomn,217(13), 6401-6408.

WWw.ijrp.org



