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Abstract 

The rapid evolution of smartphone technology has led to a surge in cyber-attacks specifically targeting smart devices of 
particular concern is the prevalent practice among users to grant permissions to arbitrary programs without due 
consideration, thereby undermining the efficacy of the authorization system. While numerous malware detection methods 
have been proposed, they often exhibit limitations, including inadequate identification and detection rates. To address 
these pressing challenges, this paper presents a novel approach called Convolutional Neural Network-Based Adaptive Red 
Fox Optimization (CNN-ARFO) aimed at discerning between normal and malicious malware applications on Android 
smartphones. The methodology involves the pre-processing of the dataset, wherein the Minmax approach is employed to 
effectively normalize features. Subsequently, during extraction, the CNN-ARFO method meticulously scrutinizes 
malicious APKs, curating a representative selection of normal apps to extract essential characteristics crucial for 
identifying malware operations. The foundation of the proposed method lies in harnessing the Adaptive Red Fox 
Optimization (ARFO) technique in conjunction with Convolutional Neural Networks (CNNs) to achieve precise and 
reliable malware detection. The CNN-ARFO approach is comprehensively evaluated to assess its efficacy, and its 
performance is compared against other state-of-the-art malware detection techniques, including DANN, DBN, MLBS, and 
DE-CNN. A diverse set of evaluation metrics, including accuracy, precision, recall, and f-measure, are employed for a 
thorough analysis. Experimental results indicate the superiority of the CNN-ARFO method, demonstrating outstanding 
performance with accuracy, precision, recall, and f-measure values of 99.20%, 97.45%, 91.23%, and 98.43%, 
respectively. 
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1. INTRODUCTION 

1.1. Background  

Since 2008, the Android operating system has been a strong mobile operating system in the global context. It 
has become the most popular operating system for smart mobile phones. In 2021, about 1,433.86 million units 
of smartphones sold globally were based on Android [1]. According to strategy analytics, 87.5 % of 
smartphones market with the Android operating system on the Global market. Since 2021, the use of 
smartmobile phones has increased due to their simplicity and effectiveness for the normal user. The rate of 
smartphones is low but the demand for smartphones is high compared to IOS devices. While the increasing 
demand for smartphones is good for smartphone suppliers, some hidden disadvantages are found for the non - 
technical user. Malware applications are continuously increasing as a threat and affecting real applications 
through various ways like bank lies, malicious APK files, phonic calls, lottery, and ticketing scams so many 
ways are found these days but now we are focusing the Android malicious threat on the Android operating 
system. As per the latest Google Play status, we will be shocked to know that there are 3.48 million apps 
currently at the Google Play Store. This number of apps on Google Play is on the rise as 3,739 apps are added 
to the Play Store every single day [2]. Many security attack surfaces exist due to many variables such as 
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Android applications’ open ecological mode, coarse-grained permission management, and the ability to 
invoke third-party code, which gravely compromises the integrity of Android applications. The machine 
learning technique itself deduces application-based activities when integrated with program analyzing 
techniques. This approach is also based on two main techniques: static analysis and dynamic technique. The 
static approach is a most beneficial approach that quickly scans and determines the malicious application but 
many malware apps established a sequence of deformation technical advancements namely execution of 
native code, and encryption byte code with reflection [3]. According to a similar article by previous authors, 
the proposed approach for the effective detection of Android malware applications consists of three 
independent phases: pre-processing, feature extraction, and detection. In the pre-processing phase of the 
selected data set, the Minmax approach is utilized to normalize the features. During the extraction phase, the 
malicious APK and the collected regular apps are analyzed to detect and extract the features required for 
malware to function properly. Finally, to recognize Android mobile applications, the ARFO technique based 
on CNN is applied [4]. 

1.2. Related Works 

(I) A Review of Android Malware Detection Approaches Based on Machine Learning 
 
The backdrop to Android malware was briefly provided, followed by a full analysis of machine learning-
based methodologies for detecting Android malware, roughly in the order of the machine learning 
development pipeline. At each level, a variety of different approaches were evaluated, with extensive 
assessment of their advantages in specific scenarios. Some significant knowledge was summarized in the form 
of diagrams and tables to aid comprehension and comparative analysis. Finally, we identified five areas for 
further research: sample set formation, data optimization and processing, feature extraction and establishment, 
machine learning application, and classifier evaluation. This paper focuses on machine learning methods for 
detecting malware on Android. We believe that this work adds to previous assessments by filling some 
research gaps and highlighting some open issues in this sector. We hope that this evaluation will serve as a 
starting point for interested readers and inspire them to pursue new research directions [5]. 
 
(II) A Systematic Literature Review of Android Malware Detection Using Static Analysis 
 
According to this SLR, (1) the most commonly used static analysis technique in Android malware detection is 
Android characteristic; (2) in empirical studies, in-lab data sets such as Drebin and Genome occupy the 
biggest proportion. Most research use Apk tool as a static analysis assistance tool. The most commonly 
utilized feature reduction approach is IG. The most commonly utilized features are permissions and sensitive 
API requests. The machine learning model accounts for the majority of the models employed. And accuracy is 
the most commonly used performance metric; (3) empirical evidence shows that static analysis techniques are 
successful at detecting malware; (4) Based on the analysis and comparison of main investigations, they arrive 
at the preliminary conclusion that the neural network model outperforms the non-neural network model. This 
SLR concludes that Android malware detection via static analysis still faces several obstacles based on the 
outcomes of research questions. To address this issue, we suggest some criteria for developing novel 
strategies that increase the effectiveness of Android malware detection and establishing an uniform platform 
for properly assessing the performance of multiple techniques. We will follow these principles in the future to 
boost Android malware detection methods [6]. 
 
(III) Convolution Neural Network for Classification of Android Applications Represented as Grayscale 
Images 
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The investigations are carried out on a data set of 1747 grayscale photos of Android applications from 13 
malware families. We claim that our data sets are made up of latest Android harmful apps. The results show 
that photos made with classess.dex files have higher categorization accuracy than images created with 
AndroidManifest.xml files. It is also determined that when image size increases for both types of files, 
classification accuracy increases. Thus, images formed from the classess.dex file with a resolution of 256x256 
had the maximum classification accuracy (74.5%). This article employed assessment parameters to evaluate 
and compare the suggested CNN model design on various picture sizes created from AndroidManifest.xml 
and classess.dex files. It also includes an analysis of the results acquired [8]. 
 
(IV) A Hybrid Approach for Android Malware Detection and Family Classification 
 
They worked on both detection and family classification of Android malware in this paper. Here, detection 
refers to a binary classification problem with two classes: "malware" and "normal," whereas family 
classification refers to a multi class classification problem with 13 malicious families. The term "Android 
malware family" refers to a group of malicious programs that exhibit similar behavior and are derived from 
the same source code. They propose a hybrid approach for detecting and classifying malicious Android apps. 
It is based on the combination of static and dynamic malware analysis. They begin with static malware 
analysis in order to extract static features based on API calls, command strings, permissions, and intents. 
Then, using CuckooDroid, we performed dynamic malware analysis to extract features. 
 
(V) An Efficient Android Malware Detection Using Adaptive Red Fox Optimization Based CNN 
 
This paper proposes a convolutional neural network-based adaptive red fox optimization (CNN-ARFO) 
method for classifying malware applications as normal or malicious. For the effective detection of Android 
malware applications, the proposed approach consists of three distinct phases: pre-processing, feature 
extraction, and detection. The Minmax technique is used to normalize the features in the pre-processing phase 
of the selected data set. In the extraction phase, the malicious APK and the collected normal apps are 
investigated to identify and extract the essential features for the proper operation of malware. Finally, the 
ARFO approach based on CNN is used to detect Android mobile applications. The results of detecting normal 
and malicious applications on Android mobiles are then demonstrated by evaluating parameters such as model 
accuracy rate, model loss rate, accuracy, precision, recall, and f-measure. The outcome revealed that the 
proposed approach achieves a detection accuracy of 97.29% [7]. 
 

2. METHODOLOGY 

The proposed framework’s workflow includes three distinct phases: pre-processing, feature extraction, and 
detection. This section presents a proposed CNN-ARFO approach for detecting malicious Android 
applications. The proposed framework’s workflow includes three distinct phases: pre-processing, feature 
extraction, and detection. This section presents a proposed CNN-ARFO approach for detecting malicious 
Android applications. 

Table 1. Confusion matrix 

Class Malicious Normal 

Predicted 1 2 

Actual 3 4 

   

338

www.ijrp.org

Ambika Dulal / International Journal of Research Publications (IJRP.ORG)



  

 
 
Through the pre-processing, feature extraction, and detection phases, the researchers created a framework for 
Android malware detection using the ARFO technique. Data collection, preprocessing, cleaning, splitting, 
model training, evaluation, and comparison with previous papers were all part of the process. VirusTotal.com 
data was collected over three years. The data was cleaned and split into a training and test set in 80:20 ratios. 
 

 

Fig. 1.  Workflow of the Proposed Framework 

 
A. Data Pre-processing 
In general, the pre-processing phase includes normalization, NaN elimination, scaling, and duplicate instance 
removal. The data set thus chosen is ambiguous and has low variances. As a result, when normalizing the 
features, a MinMax scaling is chosen. The term normalizing refers to the re-scaling of numerical attributes 
with fixed scale values of 0 and 1, respectively. Scaling the input attributes that depend on magnitude is 
extremely important. Normalization is a scaling method for shifting and rescaling data set values. 
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B. Feature Extraction 
In general, the feature extraction phase searches the manifest file for intents and permissions. This phase 
includes two distinct phases: 

•  Permission type (regular or hazardous) and its number, 
•  The type of intent (regular or hazardous) and the number of intents. 

 
Furthermore, both intentions and permissions are classified into four major groups: regular permissions, 
hazardous permissions, regular intents, and hazardous intents [9]. 
 
C. Detection Phase 
This section combines a convolution neural network and an adaptive red fox optimization algorithm to 
determine whether an Android application is malicious or normal. Malicious mobile detection is concerned 
with requesting permission and displaying a variety of malicious codes. The following section discusses the 
technical backgrounds of CNN and the ARFO algorithm [10]. 
 
D. Database Description 
There are 12,000 databases in this section, which include both malicious and normal datasets. In this study, 
we used normal and malicious applications with 12,000 each as training data and 1000 malicious and normal 
applications as testing data. 
 

3. RESULT 

The result section presents the findings of a study that focused on detecting normal and malicious Android 
applications. To assess the performance of the proposed CNN-ARFO approach, various parameters such as 
accuracy rate, loss rate, precision, recall, and f-measure were evaluated. The accuracy and loss values for both 
the training and testing data sets are shown in Figure 1. According to the results of the analysis, the proposed 
approach achieves the highest testing accuracy rate of 92.1% at the sixth epoch. After the seventh epoch, the 
training accuracy improves to 92.2%. The training loss reaches a low of about 25% at the second epoch and 
then drops slightly before stabilizing at 10%. The testing loss begins at 66% and smoothly increases as the 
epoch value increases. Overall, the results show that the proposed CNN-ARFO approach is effective at 
detecting malicious applications on Android mobile devices. 
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Fig. 2. Epoch Vs Train Loss Evaluation on Epoch 5 

 

 
 

Fig. 3. Epoch Vs Train Loss Evaluation on Epoch 10 
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Fig.4. ROC Curve Evaluation on Epoch 5    

The proposed optimizer achieved approximately 98.20% precision, while the other approaches obtained 
precision values ranging from 91.38% to 98.42%. As a result, the analysis shows that the proposed approach 
outperforms the other approaches tested in terms of both recall and precision values. 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Fig.5. Phase Spectrum Plot on Epoch 5 
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Figures 3 and 4 depict the proposed method's ROC curve, which represents the classification model's 
performance at various classification thresholds. The curve is drawn using the CNN-ARFO classifier's true 
positive and false positive rates at various thresholds. Based on the true positive value, the analysis shows an 
overall accuracy rate of 94.88% and a false positive rate of 3.39%. The evaluation results show that the 
proposed approach achieves a high true positive rate with a low false positive rate, which improves malware 
detection performance. Figure 5 contrasts the proposed CNN-ARFO method with other malware detection 
methods such as DANN [11], DBN [12], MLBS [13], and DE-CNN[14]. 
 

4. CONCLUSION 

Numerous research scholars developed machine learning approaches for detecting malicious Android 
applications, but due to certain drawbacks, effective malware application detection becomes a difficult task. 
As a result, the proposed CNN-ARFO approach is presented in this paper to detect malicious Android 
applications. The proposed approach's accuracy rate is based on API call behaviors and permission requests 
and system file history in this case. To improve detection accuracy, the datasets are first pre-processed using 
the Minmax scaling approach. Then, for effective feature extraction, each Android application is 
accomplished by three distinct features: the permission feature, the API call feature, and the statics files 
feature. The CNN-ARFO approach is then proposed to detect malicious applications, and as a result, it can 
perform relatively quick classification with minimal computational overhead once training is completed. 
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