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Abstract 

 

The demand for clean water is growing faster than the ability to supply it, so the proportion of the population that can be served by 
PDAMs is shrinking. PDAM Tirta Je'ne'berang is authorized to provide society drinking water services that meet the requirements. The 
laboratory at PDAM Tirta Je'ne'berang is used to measure and examine the quality characteristics used as a determinant of water quality, 
which include turbidity and the amount of dissolved solids. Water quality tests were performed in a multivariate manner , with the 
parameters used being normally distributed and correlated with one another. As a result, the MEWMV control chart, which can monitor 
variability, is used in this study. The water quality characteristics used are turbidity and chlorine, which are determined using the 
MEWMV control chart, weights Ȧ, Ȝ, and L. According to the findings of the analysis, the most sensitive weights in monitoring  water 
quality variability were Ȧ = 0.8, Ȝ = 0.9, and L = 4.8004, where no data is out of control in either phase, and thus the data has been 
statistically controlled. The weights Ȧ = 0.8, Ȝ = 0.9 were chosen as the most optimal because they have the smallest difference from the 
value of Tr(Vt) Max with UCL. Environmental factors in the form of natural conditions and human factors, specifically the shift change 
that affects measurement results, are the factors causing the data to become out of control. The results of the process capability 
calculation obtained with precision are good, but the accuracy still needs to be improved. 

 
 

Keywords: water, quality control, control chart, MEWMV, process capability. 
 

 
 
 

1. INTRODUCTION 
 

Various human activities, such as industry, hospitals, hotels, trade, offices, and education, always 
necessitate large amounts of water. The amount of water required for each of these activities varies, and the 
quality requirements vary depending on the activity. With the growth of the community's population and 
economic activities, so has the demand for water, both in quantity and quality(Suprihatin, S., Suparno, 2013). 
The demand for clean water is growing faster than the ability to supply it, so the proportion of the population 
that can be served by PDAMs is shrinking. As a result, the provision of clean water frequently prioritizes 
quantity (adequacy) over maintaining high quality. This frequently leads to the issue of wide variations in 
water quality. The Tirta Je'ne'berang Regional Drinking Water Company, Gowa Regency, is authorized to 
provide community drinking water services that meet the requirements. The Tirta Je'ne'berang Regional 
Drinking Water Company has a laboratory that measures and researches the quality characteristics used as a 
determinant of water quality, which include color, turbidity, the amount of dissolved solids, organic 
substances, and manganese. Conditions that occur in the community occasionally complain about the quality 
of the company's water, such as a cloudy color, smells, and has a high level of solids. This condition causes 
various variations in these qualities(Ariani Wahyu Dorothea, 2004). 
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Process capability is an analysis of variability that relates to product requirements or specifications as 
well as to production development in order to reduce or eliminate some of the ongoing variability. This 
process capability is a critical performance dimension that demonstrates the process's ability to produce in 
accordance with product specifications determined by management based on customer needs and 
expectations(Gaspersz, 2022). Process capability analysis definition is a critical component of the overall 
quality improvement system. Data from process capability analysis can be used to estimate how well a 
process will meet criteria, to aid product development in selecting or changing processes, and to reduce 
variability in the manufacturing process(Hardjosoedarmo, 1996). This process capability measurement is 
performed after the process is deemed to be under control, implying that the variations observed are solely 
due to natural factors. This process capability demonstrates how far a process can meet the desired 
specifications. In other words, machines and equipment with more reliable process capabilities will be 
required to meet tighter specifications. Multivariate capability analysis is one of the process capability 
analysis techniques. In order to use multivariate process capability analysis, the multivariate control chart 
must be under control and the multivariate assumption must also be met(Kurnia et al., 2013). 

A control chart is a tool used in quality control to precisely describe what is meant by statistical 
control, and it can be used in a variety of ways. If one or more points in the control graph fall outside the 
control limit or show a non-random pattern, the control graph displays an uncontrollable state(Montgomery, 
2009). A multivariate control chart is one of the control charts that can be used to control quality. A 
multivariate control chart for quality control is used when more than one interconnected quality dimension is 
involved. One type of multivariate control chart is the Multivariate Exponentially Weighted Moving Variance 
(MEWMV), which is a multivariate control chart with individual observations to detect changes in process 
variability involving weighting values (Ȝ), smoothing constant (Ȧ), and control limit width (L) which is 
proportional to the number of observed characteristics. This control chart has the advantage of being more 
sensitive to data shifts, so uncontrolled data will be detected more quickly. Furthermore, this control chart is 
resistant to the normal distribution. The MEWMV Control Chart was chosen because it is thought to be 
capable of detecting changes in the covariance matrix while assuming no shift in the process average. 

Based on this description, the goal of this study is to determine the process capability by monitoring 
the water quality variability at PDAM Tirta Je'ne'berang using the Multivariate Exponentially Weighted 
Moving Variance (MEWMV) control chart. This study is expected to provide companies with information on 
statistical water quality control in the 2020 time frame. 

 
2. RESEARCH 

 
2.1. Multivariate Data 

Multivariate analysis is a statistical method that analyzes several measurements (variables) on each 
object in one or more samples at the same time. According to this definition, multivariate analysis refers to 
any analytical technique that involves more than two variables at the same time(Dillon, 1984). Multivariate 
analysis is frequently confronted with the problem of observations made over time for p>1 variables or 
characters. The notation ਀ij will be used to define the object i in the variable j. Multivariate data samples can 
be presented as follows(Richard A. Jhonson and Dean W. Wichern, 2007): 

 Var-1 Var-2 ڮ Var- j ڮ Var- ݌ 

Object-1 1ݔ ڮ 12ݔ 11ݔj ݌1ݔ ڮ 

Object -2 2ݔ ڮ 22ݔ 21ݔj ݌2ݔ ڮ 

ၓ ၓ ၓ ڮ ၓ ڮ ၓ 
Object- i ݔi1 ݔi2 ݔ ڮij ݔ ڮj݌ 

ၓ ၓ ၓ ڮ ၓ ڮ ၓ 
Object – ݊ ݊ݔ ڮ 2݊ݔ 1݊ݔj ݌݊ݔ ڮ 

Alternatively, it can be written in the form of Matriks X as follows(Richard A. Jhonson and Dean W. 
Wichern, 2007): 
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1 

 ݔ

1 

I 

 ڮ 22ݔ 21ݔ৔ ڮ 12ݔ 11ݔ
ၓ  ၓ  ڮ 

 ݌2ݔ ڮ 2jݔ ݌1ݔ ڮ 1jݔ
1 

ၓ ၓ ڮ   

 [2  ] = ݌jݔ                             ڮ ijݔ ڮ i2ݔ i1ݔ = ݌ݔ݊ܺ Ԣݔ Ԣݔ 
ၓ 

 

 
2.2. Multivariate Normality Test 

I ၓ  ၓ  ڮ 

 ڮ 2݊ݔ 1݊ݔ ]

ၓ ၓ ڮ   Ԣ ݊ ݊ݔj ݌݊ݔ ڮ ] 

Multivariate normal distributions are the main distributions and problems that arise in multivariate 
analysis. The term "multivariate normal" refers to an extension of "univariate normal." Among the 
assumptions that must be met are that data on independent variables have a multivariate normal distribution 
and that the covariance variance matrix is similar across groups or populations. As a result, a multivariate 
normality test is required to determine whether the data follows a multivariate normal distribution(Sharma, 
1996). Calculating the distance measure of the mahalanobis in each observation and can be used to test the 
multivariate normal assumption. The following hypothesis will be used(Richard A. Jhonson and Dean W. 
Wichern, 2007): 

H0: Multivariate data is normally distributed. 

H1: Multivariate data are not normally distributed. 

Furthermore, the multivariate normal testing procedure is carried out by plotting the Mahalanobis 
distance ݀ 2 and the Chi-Square distribution (32 ). If  H   is greater than 50% of the value of ݀2 ൑ 

i 1ሺiെͲǡͷሻǡ݌ 
0 i ݊ 

32 , the data is said to have a multivariate normal distribution. H0 ሺiെͲǡͷሻǡ݌ ݊ 

2.3. Dependency Test 

is rejected if  it is less than 50%. 

Independence testing is used to determine whether or not there is a relationship between two variables. 
If the correlation matrix between variables forms an identity matrix, the variables are said to be independent. 
The Bartlett test demonstrates that two or more groups of large sample data from a population with the same 
variance can be identified(Rencher, 2002). If the correlation matrix between variables X1, X2, ... , Xp forms an 
identity matrix, the variables are said to be independent. The Barlett Test is used to determine the relationship 
between the variables to be studied. The hypothesis will be used(Morrison, 1990): 

H0: R = I (no correlation between variables). 

H1: R ≠ I (there is a correlation between variables). 

With the following test statistics(Morrison, 1990): 
32 = [݊ െ 2 െ 

5+݌2
] ln |ܴ| (1) 

6 

As sunch, the decision to accept H0 which means that between variables is independent if  the value of 
32  ൑ 32  1 , where n is the number of observations, p is the number of variables, R is the correlation 

 ((െ1݌)݌ ,ܽ)
2 

matrix of each variable and 32 1 
 

is the value of the Chi-Square distribution with a confidence level of 
 ((െ1݌)݌  ,ܽ)

2 

and a degree of freedom of 1 ݌(݌ െ 1). 
2 

2.4. Multivariate Exponentially Weighted Moving Variance (MEWMV) 

MEWMV (Multivariate Exponentially Weighted Moving Variance) is a technique for detecting small 
changes in process variability. The MEWMV control chart is used to detect changes in the covariance matrix 
under the assumption that there is no change in the process average. The following equation yields the 
MEWMV control chart formulation(Huwang et al., 2007): ܸݐ = ߱(਀ݐ െ ݐݕ)(਀ݐ െ ݐݕ)Ԣ + (1 െ ߱)ܸݐെ1 (2) 
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i=1 

j=1 

j=1 

i=1 

Where ݉  is the weighting value of 0 < ݉ < 1 ܸ0 = ݉(਀1 െ 1ݕ)(਀1 െ 1ݕ)Ԣ   with ݐݕ being the estimated 
change in the average process of ਀ݐ which is defined in the following equation (Huwang et al., 2007): ߣ = ݐݕ਀ݐ + (1 െ ߣ)ݐݕെ1 (3) 

Where 0 = 0ݕ and 0 < < 1. If ݐ ൒ ݌ where t is the number of observations made. A matrix C is defined to 
determine the change in the covariance matrix. Matrix C is a t x t diagonal matrix with ݉  as the smoothing 
constant element. Matrix C displays the ܸ  ,.weighting value, which can be written as follows (Huwang et al ݐ
2007): 

(1 )t1 0 0  0 

 0 

C   0 

 ơ 
 0 

(1 )t2 

0 

ơ 
0 

0  

ͼ 0 

0 (1 ) 

 0 




0 
ơ 



The following equation is derived from equation (2) (Huwang et al., 2007): ܸݐ = σݐ ߱(1 െ ߱)ݐെi(਀i െ ݕi) (਀i െ ݕi)Ԣ  + (1 െ ߱)(4) 0ܸݐ 

Furthermore, the following equation is obtained for equation (3)(Huwang et al., 2007): ݐݕ = σߣ ݐ(1 െ ߣ)ݐെj਀j (5) 

Equation (5) is substituted into ਀i െ ݕi to yield the following new equation (Huwang et al., 2007): ਀i െ ݕi = ਀i െ σߣ ݐ(1 െ ߣ)ݐെj਀j 

= ਀i െ [ߣሺͳ െ ߣ)iെͳ਀1 + ߣ(1 െ ߣ)iെʹ਀2 ߣ + ڮ(1 െ ߣ)਀iെͳ + ߣ(1 െ ߣ)0਀i] 

= (1 െ ߣ)਀i െ ߣ(1 െ ߣ)਀iെͳ െ ڮ െ 1 െ ߣ)iെͳ਀1 (6) 

where i = 1,2,3,...,t. In matrix form,  Equation (6) looks like this(Huwang et al., 2007): 
(ܺ െ ܻ) = (ݐܫ െ ܯ)ܺ (7) 

Where ݐܫ is an identity matrix with t x t dimensions and ܯ is a lower triangular matrix with t x t dimensions 
and as a predetermined weight. Equation (4) can then be written as follows(Huwang et al., 2007): ܸݐ = (ܺ െ ܻ)Ԣܥ(ܺ െ ܻ) 

= ܺԢ(ݐܫ െ ܯ)Ԣ(ݐܫ െ ܯ)ܺ 
= ܺԢOܺ (8) 

where Q is a t x t square matrix with the following equation(Huwang et al., 2007): 
O = (ݐܫ െ ܯ)Ԣܥ(ݐܫ െ ܯ) (9) 

The value of (ݐܸ)ݎݐ is obtained from equation (8) using the following equation(Huwang et al., 2007): ݎݐ = (ݐܸ)ݎݐ(ܺԢOܺ)Ԣ 
 (10) (OܺܺԢ)ݎݐ =

as a result of which the following equation is obtained(Huwang et al., 2007): ݎݐ(ܸ ) = σݍ ݐ    (σݔ ݔ ݌ ) + σݍ ݐ   (σݔ ݔ ݌ ) + ڮ + σݍ ݐ  (σݔ    ݔ ݌   ) ݐ j=1  1j ݇=1 1݇  j݇ j=1    2j ݇=1 2݇  j݇ j=1 ݐj ݇=1 ݇ݐ  j݇ ݐ 
i=1 

 ݐ
j=1 ݍij 

 j݇ ) (11)ݔ i݇ݔ 1=݇ ݌

If the p value is 1, equation (11) becomes the EWMV equation, or it can be described as a controlled chart for 
univariate data. Meanwhile, if  p is greater than one, the value of [(ݐܸ)ݎݐ]ܧ is equal to the following 
equation(Huwang et al., 2007): [( ܸ)ݎݐ]ܧ = σܧ ݍ ݐ(σ2ݔ ݌ ) + σݐ σܧ   ݍ ݐ (σݔ    ݔ ݌   ) ݐ i=1    ii ݇=1 i݇ i=1 jٸ 1     ij ݇=1 i݇ j݇ 

 (12) (O)ݎݐ .݌ = iiݍ ݐσ ݌ =

0 

= σ σ (σ 
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i=1 ݍ 

i=1 

i=1 

 ݍ ݍ

X 

X X 

ξ X 

ξ X ξ X 

Furthermore, in order to determine the control limit of (ݐܸ)ݎݐ, the following values must be 
obtained(Huwang et al., 2007): ܸܽݎܸܽ  = [( ܸ)ݎݐ]ݎ[σݍ ݐ  (σ2ݔ ݌ ) + 2 σݐ σݍ ݐ   (σݔ    ݔ ݌   )] ݐ i=1    ii ݇=1 i݇ i=1 j<i    ij ݇=1 i݇ j݇ 

= σݎܸܽ 2ݍ ݐ(σ2ݔ ݌ ) + 4 σݐ σݎܸܽ 2ݍ ݐ (σݔ    ݔ ݌   ) 
i=1    ii 

 ݐi݇ σ ݐσ ݌4 + 2ݍ 1=݇ ݐσ ݌2 =
i=1 2ݍ 

j<i   ij ݇=1 i݇ j݇ 

i=1 

ݐσ ݌2 =
 

ii 2 ݐ 
j=1    ij 

i=1 j<i    ij 

(13) 

Control limits can be determined for each t based on (ݐܸ)ݎݐ using the equation(Huwang et al., 2007): ܮ ± [(ݐܸ)ݎݐ]ܧξܸܽ(14) [(ݐܸ)ݎݐ]ݎ 

It can also be referred to as(Huwang et al., 2007): 
 
 
 

 
2.5. Capability Process 

ݐσ ݌ξ2ܮ + (O)ݎݐ .݌ = ܮܥܷ
 

ݐσ ݌ξ2ܮ െ (O)ݎݐ .݌ = ܮܥܮ 
 

 2 ݐ
j=1    ij 

 2 ݐ 
j=1    ij 

 
(15) 

 

Process capability study is a method that combines statistical tools developed from normal curves and 
control charts with good technical judgment to interpret and analyze data representing a process. The purpose 
of the process capability study is to determine the distribution of variation and to determine the effect of time 
on the mean and distribution. Administration, analysis, and use of process capability studies should be an 
integral part of the quality engineering function(Wooluru et al., 2014). One of the most important components 
in process capability analysis is the Process Capability Ratio (PCR)(Montgomery, 2013). If the control chart 
is controlled and the assumptions are met, the process capability analysis can be performed by calculating the 
process capability index(Kotz, S. and Johnson, 1993). The capability index is used to determine whether or 
not a production process is capable(Bothe, 1997). If the Cp and Cpk values are greater than one, the 
production process is capable. The calculation of the Cp and Cpk indices for univariate data for statistically 
controlled data is as follows(Raissi, 2009): 

 = ( X) ܥ 
Xiܮܥܷ

െܮܥܮXi
 i ݌ 

 ߤ)+  2ߪ   6
i i 

െܶXi
 )2 (16) 

 } i݊݉ = ( X)   ܥ 
Xiܮܥܷ

െߤXi
 

, 
Xiߤ

െܮܥܮXi
 i ݇݌ (17) { 

 ߤ)+  2ߪ   3
i i 

െܶXi
 ߤ)+  2ߪ   3 2(

i i 
െܶXi

)2 

Furthermore, for multivariate calculations, the following equation can calculate all process capability 
indices(Raissi, 2009): 

 i ݌   i=1 i ݌ (18) ( X) ܥ W ݌σ = ܥܯ 
 i ݇݌   i=1 i ݇݌ (19) ( X)    ܥ W ݌σ = ܥܯ 
 

Where ݌ܥܯand ݇݌ܥܯ are multivariate ݌ܥ and ݇݌ܥ respectively, and Wi are weights with magnitudes ranging 
from 0 to 1. The amount of weighting is determined by the level of importance of the quality characteristic 
variable, with the sum of the weights equal to one. 

 
Meanwhile, for processes that are not statistically controlled, the process performance indices ܲ݌ and ܲ݇݌ are used. For univariate data, the Pp and Ppk indices are computed as follows: ܲ݌ = 

 ܮܥܮെܮܥܷ

 ݏ6
(20) 

σ 

σ σ 
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ܲ = ݉i݊ {
 ҧݔെܮܥܷ

, 
ܮܥҧെܷݔ

 ݏ3 ݏ3 ݇݌   (21) {
 

Multivariately, the ܲ ܲ and ݌  process performance indices are appropriate because they do not take ݇݌
into account the weighting of each quality characteristic. For multivariate data, the ܲ݌ and ܲ  indices are ݇݌
calculated as follows(Werner, 2011): 

 

 ݌ܲܯ 

 ݌ 

i=1 

 ݇݌ܲܯ (22) ݌(ܲ݌ 1
 ݌

i=1 ܲ݇݌ 

1 

 ݌(
(23) 

 

3. Method 
 

3.1 Data Sources and Research Variables 
 

The data used in Secondary data from PDAM Tirta Je’ne’berang obtained in the IPA Pandang-Pandang 
laboratory for the period 2020, divided into two phases, were used. Phase I consists of data from January to 
June with the goal of determining the most optimal or sensitive weighting, and phase II consists of data from 
July to December with the goal of controlling the weights determined in phase I. Turbidity (X1) and chlorine 
(X2) are the variables used. Because the turbidity of the production water can affect the need for chlorine, the 
two variables interact. Chlorine can be used to remove turbidity from production water. Chlorine is used to 
purify water so that it does not emit unpleasant odors. The more turbid the production water, the more 
chlorine required, so the remaining chlorine in the production water will be significant. 

3.2. Analysis Step 

The following steps were taken in response to the research objectives: 

1. Using descriptive statistics, describe water treatment data from PDAM Tirta Je'ne'berang Phase I. 
2. Using PDAM Tirta Je'ne'berang Phase I water treatment data, test the multivariate normal distribution to 

see if  the research variables follow the normal distribution. 
3. Conducting independence testing on PDAM Tirta Je'ne'berang Phase I water treatment using the Bartlett 

test to determine whether the variables are correlated. 
4. Using MATLAB software, analyze data from the PDAM Tirta Je'ne'berang Phase I water treatment data 

using the Multivariate Exponentially Weighted Moving Variance (MEWMV) control chart. 
5. Repeat step 4 with the weights obtained from Phase II data. 
6. Identify out-of-control data. 
7. Conducting process capability analysis in phases I and II. 

 
4. RESULTS 

4.1 PDAM Tirta Je'ne'berang Phase I Water Quality Characteristics Description 
The following table shows the average, standard deviation, variance, minimum value, and maximum 

value from PDAM Tirta Je'ne'berang Phase I water quality data for the period January to June 2020. 
 

Table 1. Descriptive Statistics of PDAM Tirta Je'ne’berang Phase I Water Quality Characteristics 

 
Variable 

 
Minimum 

 
Maximum 

 
Mean 

Std. 
Deviation 

 
Variance 

 
Specification 

Turbidity 1,27 8,12 4,26 1,12 1,25 5 NTU 

Chlorine 0,1 2,79 0,79 0,56 0,32 0,5 ppm 

= (σ 

= (σ 
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i 

2;0,05 

0,05;1 

Based on Table 1, information about the water quality of PDAM Tirta Je'neberang Phase I is obtained. 
The average turbidity is 4.26 NTU, with a standard deviation of 1.12 indicating a level of spread to the 
average data and a variance of 1.25. The average chlorine concentration is 0.79, with a standard deviation of 
0.56 and a variation of 0.32. This value indicates that the standard deviation has a small average or a narrow 
variance. 

 
4.2 Multivariate Normality Test 

The following table was obtained by performing an examination of the standard multivariate 
assumption on both turbidity and chlorine quality characteristics that must be met by calculating ݀2 = (ܺi െ ߤሻԢܵെ1(ܺi െ ߤ) compared to 32 : 

Table. 2. ݀2 Calculation Results with 32 Phase I 
i 2;0,05 

Observation Turbidity Chlorine ݀2 
i 32 

2;0,05 

1 3,37 0,48 0,00663 5,9991 

2 4,2 0,56 0,02202 5,9991 

3 4,1 0,75 0,02301 5,9991 

4 5,25 0,19 0,02874 5,9991 

5 4,1 1,33 0,04721 5,9991 

6 3,52 1,26 0,05279 5,9991 

7 4,2 0,75 0,08112 5,9991 

8 3,91 1,00 0,13766 5,9991 

9 4,59 0,27 0,15333 5,9991 

ၓ ၓ ၓ ၓ ၓ 
147 3,13 0,52 18,43322 5,9991 

Based on Table 2, which was generated from 147 observational data, the proportion value of 0.9397 or 
93.97%, indicates that the proportion value is greater than 50%, implying that the water quality characteristics 
of PDAM Tirta Je'ne'berang Phase I follow the multivariate normal distribution. 

4.3 Dependency Test 
 

The dependency test employs the Bartlett test to determine the correlation of the two variables with the 
following hypothesis: 

H0: R = I (no correlation between variables). 

H1: R ≠ I (there is a correlation between variables). 

Based on the calculation results, 32 = 6, 627 >32         = 3, 842 value is obtained at a significance 
level of 5% or 0.05, implying H0 and concluding that the two Phase I water quality variables are correlated. 

4.4 Monitoring Process Variability on Water Quality Phase I 
 

A Multivariate Exponentially Weighted Moving Variance (MEWMV) control chart is used to monitor 
process variability in water quality control. MATLAB software is used to implement this control chart. (ݐܸ)ݎݐ is the point to be plotted on this control chart, and it necessitates the use of a C matrix to control 
changes in the covariance matrix. The M matrix is also a lower triangular matrix with elements. Following the 
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completion of the various steps, the points will be plotted on the MEWMV control chart with predetermined 
control limits. 

The results of Phase I data analysis using MATLAB software revealed that the MEWMV control chart 
began to be statistically controlled where there were no out of control points on the weights of =0.8 and =0.3 
with L=4.8313. The value of (ݐܸ)ݎݐ Max on the weighting is 5.6778 with a value of UCL = 5.7147 and LCL 
= -0.0369. To determine the most optimum weighting on the MEWMV control chart, it is seen from the 
minimum difference from the (ݐܸ)ݎݐ value minus the statistically controlled UCL. The following table shows 
the difference between (ݐܸ)ݎݐ Max and UCL: 

Table. 3. Result of lowering (ݐܸ)ݎݐ Max with UCL 
 

Ȧ 
 

Ȝ 
 

L (ݐܸ)ݎݐ Max 
 

UCL (ݐܸ)ݎݐ Max 
-UCL 

Out Of 
Control 

0,8 0,3 4,8313 5,6778 5,7147 -0,0369 0 

0,8 0,4 4,8313 4,1714 4,1985 -0,0271 0 

0,8 0,8 4,8063 0,4635 0,4645 -0,0010 0 

0,8 0,9 4,8004 0,1159 0,1160 -0,0001 0 

0,9 0,3 4,8900 6,6778 5,7722 0,9056 0 

0,9 0,4 4,8950 4,1714 4,2444 -0,0730 0 

0,9 0,8 4,8638 0,4635 0,4691 -0,0056 0 

0,9 0,9 4,8475 0,1159 0,1167 -0,0008 0 

According to table 3, the weighting of ݉ =0.8 and 0.9= ߣ with L=4.8004 has the smallest difference. 
As a result, the fastest weighting ݉ =0.8 and 0.9= ߣ are the most sensitive in detecting out of control data. 
Here's an example of a control chart for the weights ݉  =0.8 and 0.9= ߣ: 

 
Fig 1. MEWMV Data Plot Control Chart Phases I with Weighted ݉ = 0, 8 and 9 ,0 = ߣ with L = 

4, 8004 

4.5 Monitoring Process Variability on Water Quality Phase II 
 

The optimum weighting from phase I is used in the MEWMV control chart to control the variability of 
the phase II process. The results of the analysis of the process variability control of PDAM Tirta Je'ne'berang 
water quality phase II using the MEWMV control chart are as follows. 
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Fig 2. MEWMV Data Plot Control Chart Phases II with Weighted ݉ = 0, 8 and 9 ,0 = ߣ with L = 

4, 8004 

Figure 2 shows that the control of process variability in phase II is the same as in phase I, with the exception 
that the data is statistically controlled using the optimum weighting of phase I, this is indicated by the absence 
of points that are outside the control limits. 

4.6 Identify Out Of Control Data 

According to information obtained from the PDAM Tirta Je'ne'berang laboratory team, the factors for 
the Out Of Control data were caused by environmental and human factors. Environmental factors include 
erratic weather patterns that affect water clarity and inconsistent chlorine use. The human factor is caused by 
inconsistencies in measuring as well as shift changes, resulting in differences in measurement methods. The 
results of the causative variable identification show that the turbidity variable has a significant influence on 
the presence of Out Of Control data. This is due to the fact that the turbidity of the water is affected by the 
weather conditions at the time of measurement. 

 
4.7 Conducting Process Capability Analysis in Phases I and II 

 
The purpose of this process capability analysis is to determine the performance of a process as a whole 

on water quality data of PDAM Tirta Je'neberang which had previously been statistically controlled using the 
MEWMV control chart with attention to the level of precision and accuracy. The capability calculation is 
univariate, which means it is performed on each measure of water characteristics, namely turbidity and 
chlorine. More information is provided in the table below: 

 
Table. 4. Univariate Process Capability 

 

Variable 

 
Phase I 

 
Phase II 

Cp Cpk Cp Cpk 

Turbidity 1,38 1,21 1,40 1,00 

Chlorine 0,90 0,46 1,42 0,57 
 

Table 4 shows that the values of Cp and Cpk were always greater than one on the turbidity variable. 
Meanwhile, the Cp and Cpk values of the independent chlorine variable were less than 1. The univariate 
calculation of process capability revealed that the turbidity variable had a high level of precision and 
accuracy. Meanwhile, the independent chlorine variable has poor process capability or performance, resulting 
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in low precision and accuracy. After obtaining the capability value univariately, search for the capability 
value multivariately. The results of the multivariate process capability calculation are shown in the table 
below: 

Table. 5. Multivariate Process Capability 
Phase I Phase II 

MCp MCpk MCp MCpk 

1,14 0,84 1,41 0,79 

According to table 5, the multivariate capability calculation results show that the MCp value is greater than 
one and the MCpk value is less than one for both phases, indicating that the water quality at PDAM Tirta 
Je'ne'berang has good process performance but lower process accuracy. As a result, the company should pay 
attention to it. 

 
5. CONCLUSIONS 

Based on the findings of the analysis, it is concluded that the water quality at PDAM Tirta Je'neberang 
in Phase I for the period January to June 2020 has a multivariate normal distribution and a correlation for both 
variables. The MEWMV control chart was used to monitor process variability in Tirta Je'ne'berang Phase I 
water quality with weights Ȧ=0.8, Ȝ=0.9, and L=4.8004, demonstrating that there is no out of control data and 
that the data is statistically controlled. The weighting Ȧ=0.8 and Ȝ=0.9 is the most effective in detecting out- 
of-control process variability. The best weighting from Phase I is then used to detect variability in Phase II 
data. The MEWMV control chart analysis in Phase II found no out of control data from July to December, 
indicating that the data was statistically controlled. Environmental and human factors are the primary causes 
of data that is out of control. Environmental factors such as erratic weather that affects water clarity and 
inconsistent chlorine use are examples of environmental factors. The human factor is caused by a shift 
change, which results in differences in the measurement method. The identification result demonstrates that in 
the presence of out of control data, the turbidity variable is the most important factor. The precision of the 
PDAM Tirta Je'ne'berang water quality process is good, but the accuracy is still poor. This can be taken into 
account by PDAM Tirta Je'ne'berang when improving processes to achieve stability and capability. 
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