Engineering & Technology

Engineering & Technology

Analytical Device Model of Graphene Nanoribbon Field Effect Transistor

Pages: 14  ,  Volume: 14  ,  Issue: 1 , October   2018
Received: 15 Oct 2018  ,  Published: 21 October 2018
Views: 80  ,  Download: 51


# Author Name
1 Md. Rakibul Alam
2 Md. Imran Hossain
3 Jannatul Ferdous


    The mobility of electron denotes how quickly electron can move through any metal or semiconductor, when pulled by an electric field. In our work, we present an analytical device model specially for a Graphene Nanoribbon Field Effect Transistor (GNRFET). A highly conducting substrate whose mobility is very high plays a vital role of the back gate, but the top gate tends to control the drain current. In our model, we calculated the potential distributions in the GNRFET as a function of back gate voltage, top gate voltage and drain voltage.


  • Graphene Nanoribbon
  • Back gate voltage
  • Top gate voltage
  • Drain voltage
  • Drain current
  • References


    Graphene nanoribbons, available online at


    Barone, V., Hod, O., and Scuseria, G. E. (2006), Electronic Structure and Stability of Semiconducting Graphene Nanoribbons, Nano  Lett., 6 (12), 2748 - 2754.


    Han., M.Y., Özyilmaz, B., Zhang, Y., and Kim, P. (2007), Energy Band-Gap Engineering of Graphene Nanoribbons, Phys. Rev. Lett., 98 (20), 206805-1 – 206805-4.


    Tapasztó, L., Dobrik, G., Lambin, P., and Biró, L. P. (2008), Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography, Nat. Nanotech., 3 (7),  397– 401.


    Son Y.-W., Cohen M. L., and Louie S. G (2006), Energy Gaps in Graphene Nanoribbons, Phys. Rev. Lett., 97 (21), 216803-1 – 216803-4.


    Jung. J., Pereg-Barnea T., and MacDonald A. H. (2009), Theory of Interedge Superexchange in Zigzag Edge Magnetism, Phys. Rev. Lett., 102 (22), 227205-1 – 227205-4.


    Huang, L. F., Zhang, G. R., Zheng, X. H., Gong, P. L., Cao, T. F., and Zeng, Z. (2013), Understanding and tuning the quantum-confinement effect and edge magnetism in zigzag graphene nanoribbon, J. Phys., 25 (5), 055304-1 – 055304-8.


    Wang, Z. F., Shi, Q. W., Li, Q., Wang, X., Hou, J. G., Zheng, H., Yao, Y., and Chen, J. (2007), Z-shaped graphene nanoribbon quantum dot device, Appl. Phys. Lett., 91 (5), 053109-1 – 053109-3.


    Bullis, Kevin (2008), Graphene Transistors, Tech. Review, Cambridge: MIT Technology Review, Inc. Retrieved 2008-02-18.


    Bullis, Kevin (2008), TR10: Graphene Transistors, Tech. Review, Cambridge: MIT Technology Review, Inc. Retrieved 2008-02-27.


    Wang, X., Ouyang, Y., Li, X., Wang, H., Guo, J., and Dai, H. (2008), Room-Temperature All-Semiconducting Sub-10-nm Graphene Nanoribbon Field-Effect Transistors, Phys. Rev. Lett., 100 (20), 206803-1 – 206803-4.


    Ballon, M. S. (2008), Carbon nanoribbons hold out possibility of smaller, speedier computer chips, Stanford Report.


    Ismail, R., Ahmadi M. T., and Anwar S., Advanced Nanoelectronics, CRC press, Taylor & Francis Group, London, Chap. 5.


    Liang, G., Nikonov, D. E., and Lundstrom, M. S. (2007), Performance projections for ballistic graphene nanoribbon field-effect transistors, IEEE Transactions on Electron Devices, 54(4), 677 – 682.


    Zhao, P., Choudhury, M., Mohanram, K., and Guo, J. (2008), Analytical theory of graphene nanoribbon transistors, IEEE International Workshop on Design and Test of Nano Devices, Circuits and Systems, 3 - 6.


    Choudhury, M., Yoon, Y., Guo, J., and Mohanram, K. (2008), Technology exploration for graphene nanoribbon FETs, 45th ACM/IEEE Design Automation Conference, 272 - 277.


    Yan, Q., Huang, B., Yu, Y., Zheng, F., Zang, J., Wu, J., Gu, B.-L., Liu, F., and Duan, W. (2007), Intrinsic current−voltage characteristics of graphene nanoribbon transistors and effect of edge doping, Nano Lett., 7(6), 1469 – 1473.


    Heer, W. A. d., Berger, C., Conrad, E., First, P., Murali, R., and Meindl, J. (2007), Pionics: the emerging science and technology of graphene-based nanoelectronics, IEDM, 199 - 202.