Computer Science & Electrical

Computer Science & Electrical

Energy Consumption Analysis in Conventional Buildings: Case Study of Sweden

Pages: 0  ,  Volume: 1  ,  Issue: 1 , September   2017
Received: 05 Sep 2017  ,  Published: 10 October 2017
Views: 220  ,  Download: 94

Authors

# Author Name
1 Ahmed Alkhayyat
2 Salahi Pehlivan

Abstract

The fast growing of energy in the world has become a high concern over some source problems 
in energy calculations of economy, where the buildings now described as one of the main energy 
consumers  for  about  33.35%  worldwide.  This  paper  aims  to  review  and  investigate  on  the 
Swedish  conventional  buildings  for  a  quantitative  research.  To  analyze  the  case  study,  latest 
energy  analysis  software  (LEAP)  used  as  an  environmental  simulation  and  assessment  tool  for 
the calculations. The first step is to lead toward studying the EU buildings in general with a case 
study  focusing  on  Swedish  conventional  buildings  for  the  design  and  method  of  calculation  in 
energy  performance  and  consumption.  In  the  second  step,  analyzing  the  data  for  the  energy 
consumption  and  comprehensive  model  for  a  conventional  building  (M-building)  in 
Stockholm/Sweden.  In  the  last  step,  a  broad  energy  consumption  that  has  been  performed  with 
the foundation of model for the evaluation of the power used as a part of the Swedish structures. 
Under the IPCC fifth assessments, the result shows that conventional buildings will expend more 
energy than other new sustainable buildings in Sweden for about 70% more. However, about 60 
kWh  of  energy  will  be  used  for  saving,  which  is  approximately  2%  for  the  management, 
transportations and other sectors/segments with a total of 263 kWh/   as energy consumption. 

Keywords

  • Energy Consumption
  • Conventional Buildings
  • Operating Energ
  • Building Materials
  • References

    [1] European Parliament and Council. Directive 2010/31/EU of the European Parliament and of 
    the  Council  of  19  May  2010  on  the  energy  performance  of  buildings  (recast).Off  J  Eur  Union 
    2010. 
    [2]  A.  Khudhair  and  M.  Farid,  "A  review  on  energy  conservation  in  building  applications  with 
    thermal  storage  by  latent  heat  using  phase  change  materials",  Energy  Conversion  and 
    Management, vol. 45, no. 2, pp. 263-275, 2004. 
    [3] C. Balaras, A. Gaglia, E. Georgopoulou, S. Mirasgedis, Y. Sarafidis and D. Lalas, "European 
    residential  buildings  and  empirical  assessment  of  the  Hellenic  building  stock,  energy 
    consumption, emissions and potential energy savings", Building and Environment, vol. 42, no. 3, 
    pp. 1298-1314, 2007. 
    [4]  G.  Bin  and  P.  Parker,  "Measuring  buildings  for  sustainability:  Comparing  the  initial  and 
    retrofit ecological footprint of a century home – The REEP House", Applied Energy, vol. 93, pp. 
    24-32, 2012. 
    [5]  "Life-cycle  energy  balances  compared:  Low-energy  house,  passive  house,  self-su1cient 
    house", The International Symposium of CIB W67, pp. 183–190, 1996. 
    [6]  A.  Alkhayyat,  "A  Review  and  Investigation  on  Energy  Efficiency  Options  in  Energy 
    Efficient  Buildings",  International  Journal  for  Research  &  Development  in  Technology,  vol.  8, 
    no. 2, 2017. 
    [7]  S.  Attia,  "Building  Performance  Simulation  Tools:  Selection  Criteria  and  User  Survey", 
    Université Catholique de Louvain: Louvain La Neuve, 2010. 
    [8]  J.J.  Kim,  "Sustainable  Architecture  Module:  Qualities,  Use,  and  Examples  of  Sustainable 
    Building  Materials,"  National  Pollution  Prevention  Center  for  Higher  Education,  College  of 
    Architecture and Urban Planning The University of Michigan, Dec. 1998. 
    [9] C. Balaras, A. Gaglia, E. Georgopoulou, S. Mirasgedis, Y. Sarafidis and D. Lalas, "European 
    residential  buildings  and  empirical  assessment  of  the  Hellenic  building  stock,  energy 

    consumption, emissions and potential energy savings", Building and Environment, vol. 42, no. 3, 
    pp. 1298-1314, 2007. 
    [10]  G.  Pallardó,  Energy  Consumption  in  Tertiary  Buildings  in  Sweden.  Sweden:  LUND 
    UNIVERSITY, 2011, pp. 36-45. 
    [11] B. Reza, R. Sadiq and K. Hewage, "Sustainability assessment of flooring systems in the city 
    of Tehran: An AHP-based life cycle analysis", 2010. 
    [12] Long-range Energy Alternatives Planning system (LEAP). Stockholm Environment Institute 
    (SEI), 2017. 
    [13] D. Chiaroni, M. Chiesa, V. Chiesa, S. Franzò, F. Frattini and G. Toletti, "Introducing a new 
    perspective  for  the  economic  evaluation  of  industrial  energy  efficiency  technologies:  An 
    empirical  analysis  in  Italy",  Sustainable  Energy  Technologies  and  Assessments,  vol.  15,  pp.  1-
    10, 2016. 
    [14]"Weather  and  temperature  averages  for  Stockholm,  Sweden",  Holiday-weather.com,  2017. 
    [Online]. Available: http://www.holiday-weather.com/stockholm/averages/. [Accessed: 20- Aug- 
    2017].