Computer Science & Electrical

Computer Science & Electrical

Automatic Segmentation of Osteoarthritis using Cartilage in Knee Deep Learning Based Approach

Pages: 8  ,  Volume: 51  ,  Issue: 1 , April   2020
Received: 22 Apr 2020  ,  Published: 06 May 2020
Views: 63  ,  Download: 22

Authors

# Author Name
1 Kamali c
2 pooja
3 Revathi S A
4 Girish A

Abstract

Osteoarthritis (OA) is most typically a result of cartilageiaging. Particularly in rural India, ithe percentage of people affected due to OA is far larger. It could be due to obesity, injuries or hereditary problems. This paper focuses on various aspects of severity analysis done using segmented cartilage. The automatic detection of OA severity supported by KL grades corresponding to several stages has been  proposed by researchers and provides better results for analysis of the disease. Automatic segmentation approach using U-net, support vector machine-n classier is being implemented in this paper. The paper mainly focuses on all important issues related to segmentation in OA by testing on 100 images and training 355 images.

Keywords

References

[1].Yaodong Du, Juan Shan, Rania Almajalid And Ming Zhang,”Knee Osteoarthritis Severity Level Classification Using Whole Knee Cartilage Damage Index And Ann”,ieee,2018.

[2]. Egor Pan_lov, Aleksei Tiulpin, Aleksei TiulpinAnd Aleksei Tiulpin, “Improving Robustness of Deep Learning Based Knee MRI Segmentation: Mixup and Adversarial Domain Adaptation” , arXiv:1908.04126v3 [eess.IV] 27 Oct 2019.

[3]. Alejandra Duarte, Chaitra V. Hegde, Aakash Kaku And Sreyas Mohan, “Knee Cartilage Segmentation Using Diffusion Weighted”MRI,arXiv:1912.01838v1 [cs.CV] 4 Dec 2019.

[4].Yaodong Du, Juan Shan, And Ming Zhang,”Knee Osteoarthritis Severity Level Classification Using Whole Knee Cartilage Damage Index And Ann”,ieee,2017.

[5].Sharma M.K., Swami H.M., Bhatia V., Verma A., Bhatia S.P.S. and Kaur G., “An epidemiological study of correlates of osteoarthritis in geriatric population of UT Chandigarh", Indian Journal of Community

Medicine, vol. 32, pp.77-8, 2007.

[6].Stefan M., Tallal C.M., Gyorgy V., Christoph R. and Siegfried T., “Magnetic resonance imaging for diagnosis and assessment of cartilage defect repairs", Injury, Int. J. Care of the Injured, vol.39S1,pp.S13-S25, 2008.

[7].Claude K., Pierre G., Benoit G., Alain G., Gilles B., Jean P.R., Johanne M.P., Jean Pierre Raynauld, Johanne M.P., Jean Pierre P. and Jacques A. de G.,”Computer aided method for quantiffication of cartilage thickness and volume changes using MRI: validation study employing a synthetic model", IEEE Trans. Biomedical Engineering, vol. 50, pp. 978-988, 2003.

[8].Zohara A. Cohen, Denise M.M., S. Daniel Kwak.,Perrine L., Fabian F., Edward J.C., and Gerard A.A.,”Knee cartilage topography, thickness, and phone areas from MRI: in-vitro calibration and in-vivo measurements",Osteoarthritis and Cartilage, vol.7, pp.95-109, 1999.

[9].Peter R.K., Johan L.B., Ruth Y.T.C., Naghmeh R., Frits R.R., Rob G.N., Wayne O.C., Marie-Pierre Hellio Le G. and Margreet K.”Osteoarthritis of the knee: association between clinical features and MR imaging findings", Radiology, vol.239, pp. 811-817,2006.

[10].Dzung L. Pham, Chenyang Xu, and Jerry L.Prince, “Current Methods in Medical Image Segmentation",Annual Review of Biomedical Engineering 2000, Volume 2, pp:

[11].Alireza Norouzi, Mohd Shafry Mohd Rahim, Ayman Altameem, Tanzila Saba, Abdolvahab Ehsani Rad, Amjad Rehman(2014)-Medical Image Segmentation Methods, Algorithms, and Applications", IETE Technical Review, 31:3,199,213DOI:10.1080/02564602.2014.906861

[12] Jing Wu, Mohamed R. Mahfouz, -Robust “X-Ray Image Segmentation by Spectral Clustering And Active Shape Model," Journal of Medical Imaging. 3(3),

034005 (2016), DOI: 10.1117/1.JMI.3.3.034005.

[13] Maxim Ryzhkov, “Knee Cartilage Segmentation Algorithms: A Critical Literature Review", Faculty of drugs theses “(Master's thesis), Utrecht University

Repository, 2015

[14] Aleksei Tiulpin, Jerome Thevenot, Esa Rahtu, Petri Lehenkari, Simo Saarakkala, “Automatic Knee Osteoarthritis Diagnosis from Plain Radiographs: A Deep Learning-Based Approach", Journal Scienti_c reports, Volume 8, Issue 1, DOI:10.1038/s41598-018- 20132-7, 2018

[15] Brett, Christopher Brian Hartley Wolstenholme And Philip Gerard Conaghanmichael Antony Bowes, Gwenael Alain Guillard, Graham Richard Vincent, Alan Donald, The Journal Of Rheumatology ,2020

[16] Fang Liu, Phd Zhaoye Zhou, Phd Alexey Samsonov, Phd Donna Blankenbaker, Md, Deep Learning Approach For Evaluating Knee Mr Images, Musculoskeletal Imaging,2018

[17]Archit Raj, Srikrishnan Vishwanathan, Bhavya Ajani, Karthik Krishnan And Harsh Agarwal, Automatic Knee Cartilage Segmentation Using Fully Volumetric Convolutional Neural Networks For Evaluation Of Osteoarthritis,ieee, 15th International Symposium On Biomedical Imaging (Isbi 2018) April 4-7, 2018, Washington, D.C., Usa

[18].Brandt Kd, Doherty M, Lohmander Ls. Osteoarthritis. 2nd Ed. Oxford ;New York: Oxford University Press; 2003. Xiii, 598 P.

[19]  Rosemont Il. United States Bone And Joint Decade. The Burden Of Musculoskeletal Diseases In The United States. American Academy Of Orthopaedic Surgeons, 2008.

[20] Chu Cr, Williams Aa, Coyle Ch, Bowers Me. Early Diagnosis To Enable Early Treatment Of Pre-osteoarthritis. Arthritis Research & Therapy. 2012;14(3):212.

[21] .Bhatia D, Bejarano T, Novo M. Current Interventions In The Management Of Knee Osteoarthritis. Journal Of Pharmacy & Bio allied Sciences.2013;5(1):30-8.