
 

Review and Comparison for Collision Resolution in a Hash 

Table 

 Aye Aye moe
a
, Tin Tin Soe

b
, Moe Moe Thein

a,b,
*  

a
dawayeayemoee@gmail.com 

b
tintinsoe.kse2018@gmail.com 

c
cummthein74@gmail.com 

University of Computer Studies (Meiktila), Myanmar  

University of Computer Studies (Meiktila), Myanmar  

University of Computer Studies (Pyay), Myanmar   

 

 

Abstract 

Hash tables are quite common knowledge structures in computing. They supply economical key primarily 

based operations to insert and search for knowledge in containers hash table. In Computing, there are trade-

offs associated to the utilization of hash tables. They are unhealthy selections once there’s a necessity for type 
and choose operations. There are two main problems relating to the implementation of hash table analysis: the 

hashes operate and therefore the collision resolution mechanism. The hashes operate may be technique for the 

mathematical process that transforms a selected key into a selected table address. The collision resolution 

mechanism is performed for coping with keys that hash to identical address. During this paper, ways in which 

collision(linear probing, quadratic probing and double hashing) is resolved or enforced, comparison between 

them is created and conditions beneath that one technique  is also desirable than others are printed. 

Keywords: Hashing, Hash Function, Hash Table, Collision Resolution Strategies, Open Addressing Strategy, Load Factor; 
 

1. Introduction 

An Information structure might be a selected approach to storing and organizing data in a computer so that 

it can be used efficiently. In the algorithm analysis, data need to be adjusted data structures such as arrays, 

stacks, queues, trees, hashing and graphs. Different kinds of data structures are suited to several of 

applications. The two main ways of collision resolution in hash tables unit of measurement chaining (close 

addressing) and open addressing. The three main techniques beneath open addressing are linear probing, 

quadratic probing and double hashing. This paper work considers the open addressing technique of collision 

resolution, namely, linear probing, quadratic probing and double hashing. The algorithms were enforced in 

C++, and sample data information was applied. Review and comparison of their performance is created. 
Hashing may be a technique that is used to uniquely identify a specific object from a group of similar objects. 

Hash table collision resolution techniques are largely advanced ideas for IT students. During this paper, hash 

table collision resolution approach is developed to supply a useful methodology for finding out basic 

operations that unit of measurement performed on Hash table.  

The remainder of this paper is organized as follows. In Section 2, Hashing and hash function are 

explained. In Section 3, Collision resolution techniques of the study are presented. Section 4, Review and 

comparisons area unit explained. In Section 5, attracts Conclusions. 

 

mailto:dawayeayemoee@gmail.com
mailto:tintinsoe.kse2018@gmail.com
mailto:cummthein74@gmail.com


  

1.1 Hashing and Hash Function 

For Hashing may be a technique that is used to uniquely identify a specific object from a group of similar 

objects. Assume that you simply have associate degree object and you wish to assign a key to it to create 

looking out simple. To store the key/value pair, you will use an easy array like a data structure where keys 

(integers) can be used directly as an index to store values. However, in cases where the keys are large and 

cannot be used directly as an associate degree index, you ought to use hashing.  

In hashing, giant keys area unit born-again into tiny keys by exploitation hash functions. A hash function 

is any well-defined procedure or mathematical relation that converts an oversized, presumably variable-sized 

quantity of knowledge into a little data point, typically one number that will function associate degree index to 

associate degree array. The values area unit then holds on during an organization known as hash table. The 

thought of hashing is to distribute entries (key/value pairs) uniformly across an associate degree array. Every 

part is assigned a key (converted key). By exploitation that key you will access the part in O(1) time. Using 

the key, the algorithm (hash function) computes an associate degree index that implies wherever associate 

degree entry will be found or inserted. Hashing is enforced in two steps: An easy way to comply with the 

conference paper formatting requirements is to use this document as a template and simply type your text into 

it. 

 An element is converted into an associate degree number by using a hash function. This part will be 

used as associate degree an index to store the initial part,, which falls into the hash table. 

 The element is hold on within hash table wherever it will be quickly retrieved using hashed key. 

hash = hashfunc(key)  

index = hash % array_size  

 In this technique, the hash is freelance of the array size associate degree and it is then reduced to an index 

(a number between 0 and array_size - 1) by exploitation modulo operator (%). A hash function is any function 

that can be used to map a knowledge set of an arbitrary size to a knowledge set of a fixed size, which falls into 

the hash table. The values came by a hash function are called hash values, hash codes, hash sums, or just 

hashes. There are many types of hash functions, for the aim of this analysis, division technique is used. . 

During this technique the returned integer, x is to be divided by M, the size of the table. The reminder, that 

should be between 0 and M-1, are going to be accustomed specify the position of x within the table.  
 h(x) = x mod M  

To achieve a decent hashing mechanism, it’s necessary to own a decent hash function with the subsequent 

basic requirements: 

 Easy to compute: It ought to be simple to compute and should not become a rule in itself. 

 Uniform distribution: It ought to  

 An event distribution across the hash table and will not result in clustering. 

 Less collision: Collisions occur once pairs of components are mapped to an equivalent hash value. 

These ought to be avoided. 

Hash functions are utilized in conjunction with hash tables to store and retrieve information things or 

information records. The hash function interprets the key related to every information or record into a hash 

code which is used to index the hash table. Once an item is to be added to the table, the hash code might index 

an empty slot (also called a bucket), in which case the item is added to the table there. If the hash code 

indexes a full slot, some reasonably of collision resolution is required: the new item could also be omitted (not 

added to the table), or replace the resent item, or it will be else to the table in another location by a given 

procedure. That procedure depends on the structure of the hash table: In chained hashing, every slot is the 

head of a linked list or chain, and items that collide at the slot are added to the chain. Chains may be kept in 

random order and searched linearly, or in serial order, or as a self-ordering list by frequency to speed hurry up 

access. In open address hashing, the table is probed ranging from the occupied slot in a given manner, 

typically by linear probing, quadratic probing, or double hashing until an open slot is located or the whole 

https://en.wikipedia.org/wiki/Linear_probing
https://en.wikipedia.org/wiki/Quadratic_probing
https://en.wikipedia.org/wiki/Double_hashing


   3 

table is probed (overflow). 

1.2 Collision Resolution Techniques 

All Hashing is a well-known searching approach. In this hashing, hash function is used to compute the 

hash value for a key. Hash value is then used as an index to store the key value in the hash table. When the 

hash value of a key maps to an already occupied bucket of the hash table, it is called as a Collision 

Resolution. Collision Resolution Techniques are the techniques used for resolving and handling the collision. 

When collisions occur, it is need to store the objects with colliding keys in alternative positions. Among the 

most widely used methods for resolving collisions is the method of chaining, in which the hash table positions 

are regarded as buckets, each one containing a pointer to a linked list (or other data structure) where the 

colliding objects will be located. It is a simple example to show that the average number of elements in each 

bucket is equal to the load factor of the hash table, defined as α=n/m for a hash table with m positions and n 

stored objects. Load factor is the ratio n/m between n, number of entries and m the size of its particular bucket 

array. As we shall see later in this paper work, with a best hash function, the average lookup cost is nearly 

constant as the load factor increases from 0 up to 0.7 or so. At that point of view, the probability of collisions 

and the cost of handling them increase. 

If, when an element is added, it hashes to the same value as an already inserted element, then we have 

a collision and need to resolve it. There are several techniques for dealing with this: 

-Separate chaining 

-open addressing 

(1) Linear probing 
(2) Quadratic probing 

(3) Double hashing 

Separate Chaining is an approach way to resolve collisions, but it has additional memory cost to store 

the structure of linked-lists. If entries datum are small (for instance integers) or there are no any values at 

all, then memory waste is corresponding to the dimensions of data itself. Once the hash table is predicated 

on the Open addressing strategy, all key-value pairs are stored in the hash table itself and there is no need 

for external organization. 

1.2.1 Linear Probing 

In open addressing, instead of in connected lists, all entry records area unit holds on at intervals the array 

itself. Once a new entry must be inserted, the hash index of the hashed value is computed and then the array is 

examined (starting with the hashed index). If the slot at the hashed index is unoccupied, then the entry record 

is inserted in slot at the hashed index else it yields in some probe sequence until it finds an unoccupied slot. 

The probe sequence is that the sequence that’s followed whereas traversing through entries. In various probe 

sequences, you may be able to have entirely completely different intervals between successive entry slots or 

probes. Once collusion occurs; the table is search consecutive for an empty slot. This is often accomplished 

using two values - one as a beginning value and one as an interval between consecutive values in standard 

arithmetic. The second value, which is the same for all keys and referred to as the step size, is repeatedly 

supplemental to the starting value until a free area is found, or the complete table is traversed. 

Linear probing is once the interval between sequent probes is mounted (usually to 1). Let’s assume that the 
hashed index for a selected entry is index. The inquisitor sequence for linear inquisitor will be: 

index=index%hashTableSize 

index=(index+1)%hashTableSize 

index=(index+2)%hashTableSize 

index = (index + 3) % hashTableSize and so on. 

http://www.algolist.net/Data_structures/Hash_table/Chaining


  

Example: Insert keys {89,18,49,58,69,78} with the hash function: h(x)= x mod 10 using linear probing. Use 

the table size 10. 

Answer: -when x=89; 

   h(89)=89%10=9 

   insert key 89 in hash table in location 9 

 -when x=18; 

 h(18)=18%10=8 

 insert key 18 in hash table in location 8 

 -when x=49; 

 h(49)=49%10=9 (Collision) 

so insert key 49 in hash table in next potential vacant location of 9 is 0. 

-when x=58; 

 h(58)=58%10= 8 (Collision) 

insert key 58 in hash table in next potential vacant location  8 is 1(since 9, 0 already contains values). 

when x=69; 

 h(69)=69%10=9 (Collision) 

insert key 69 in hash table in next potential vacant location 9 is 2( since 0,1 already contains values). 

when x=78; 

 h(78)=78%10=8 (Collision) 

 search next vacant notice time for the table   

which is 3 (since 0, 1, 2 contain values) 

insert 78 at location 3. 

 
Table 1: Hash table with keys mistreatment linear probing 

 

0 49 

1 58 

2 69 

3 78 

4  

5  

6  

7  

8 18 

9 89 

Disadvantage of linear probing is: 

-as long as table is sufficiently huge, a free cell frequently be found, however the time to undertake and 

do therefore can get quite huge.  

-worse, though the table is comparatively empty, blocks of occupied cells begin forming. This result is 

thought as primary clustering. 

-any key that hashes into the cluster would wish several makes an effort to resolve the collision, thus it’ll 
argument the cluster. 



   5 

1.2.2 Quadratic Probing 

Quadratic probing is analogous to linear probing and then the entirely distinction is that the interval 

between consecutive probes or entry slots. Here, once the slot at a hashed index for associate entry record is 

already occupied, you would wish to start traversing until you discover associate unoccupied slot. The interval 

between slots is computed by inserting the sequent value of an arbitrary polynomial inside the initial hashed 

index.  

Quadratic probing operates by taking the initial hash value and adding consecutive values of an arbitrary 

quadratic polynomial to the beginning value. The idea here is to skip regions inside the table with gettable 

clusters. 

Let us assume that the hashed index for associate entry is index associated at index there’s Associate in 
nursing occupied slot. The probe sequence is as follows: 

index     = index % hashTableSize 

index     = (index + 12) % hashTableSize 

index     = (index + 22) % hashTableSize 

index     = (index + 32) % hashTableSize  

and so on.  

 

Example: Insert keys ({89, 18, 49, 58, 69, 78} with the hash table size 10 using quadratic probing. 

Solution: -when x=89; 

 h(89)=89%10=9 

 insert key 89 in hash table in location 9 

 -when x=18; 

 h(18)=18%10=8 

 insert key 18 in hash table in location 8 

 -when x=49; 

 h(49)=49%10=9 (Collision) 

so use following hash function operate, 

h1(49)= (9+1)%10=0 

hence, insert key 49 in hash table in location 0 

-when x=58; 

 h(58)=58%10= 8 (Collision) 

 so use following hash function, 

 h1(58)=(8+1)%10=9 

again collision occur use once more the subsequent hash function, 

h2(58)=(8+22)%10=2 

insert key 58 in hash table in location 2 

when x=69; 

 h(69)=69%10=9 (Collision) 

so use following hash function, 

h1(69)=(9+1)%10=0 

again collision occurs use once more the subsequent hash function operate, 

h2(69)=(9+22)%10=3 

 insert key 69 in hash table in location 3 

when x=78; 

 h(78)=78%10=8 (Collision) 

 so use following hash function, 

h1(78)=(8+10)%10=9; once more happens use yet again the next hash perform, 



  

h2(78)=(8+22)%10=2;again collision happens figure following step 

h3(78)=(8+32)%10=7 

insert key 78 in hash table in location 7 

 
Table 2: Hash table with search keys victimization quadratic probing 

 

0 49 

1  

2 58 

3 69 

4  

5  

6  

7 78 

8 18 

9 89 

 

Quadratic probing may even be a collision resolution technique that eliminates the primary clustering 

problem take place in a linear probing. Although quadratic probing eliminates primary clustering, parts that 

hash to the constant location can probe the constant all completely different cells. This is often referred to as 

secondary clustering. Techniques that eliminates secondary clustering are available, the most fashionable is 

double hashing. 

1.2.3 Double Hashing 

Double hashing is analogous to linear probing and then the only distinction is that the interval between 

consecutive probes. Here, the interval between probes is computed by using two hash functions. Double 

hashing uses the concept of applying a second hash function h` (key) to the key once a collision happens. The 

results of the second hash function are the number of positions from the aim of collision to insert. There are 

some desires for the second function: 

 it mustn’t ever assess to zero  
 have to be compelled to ensure that every one cells are probed  

Let us say that the hashed index for an entry record is an index that is computed by one hash function and 

to boot the slot at that index is already occupied. You would like to start traversing in a specific probing 

sequence to appear for an unoccupied slot. The probing sequence will be: 

index = (index + 1 * Hindex) % hashTableSize; 

       index  =  (index + 2 * Hindex) % hashTableSize; and so on.  

 

In different methodology, to eliminate each sort of cluster the simplest way is double hashing. It involves 

two hash functions, h1(x) and h2(x), wherever h1(x) is primary hash function, is initial want to verify position 

of key and if it’s occupied h2(x) is utilized. Example: h1(x)=x% Tablesize; h2(x)= R-(x%R), where R is prime 



   7 

less than TableSize. So hi(x)=h1(x)+i*h2(x)%TableSize is employed. The disadvantage of double hashing is it 

takes over time to work out hash function. 

Example: Insert keys {89, 18, 49, 58} with the hash table size 10 using double hashing. 

Solution:-when x=89; 

 h(89)=89%10=9 

 insert key 89 in hash table in location 9 

 -when x=18; 

 h(18)=18%10=8 

 insert key 18 in hash table in location 8 

 -when x=49; 

 h(49)=49%10=9 (Collision) 

 so use following hash function, 

 h1(49)=(9+1(7-(49%7))%10 

            =(9+(7-0))%10=6 

 hence insert key 49 in hash table in location 6 

 -when x=58; 

 h(58)=58%10=8 (Collision) 

 so use following hash function, 

h1(58)=(8+1(7-(58%7))%10 

           =(8+(7-2))%10=3 

insert 58 in the location 3. 

 
Table 3: Hash table with search keys using double hashing 

 

0  

1  

2  

3 58 

4  

5  

6 49 

7  

8 18 

9 89 

 

2. Review and Comparison Results 

To compare the performance of the open addressing techniques, we have a tendency to thought-about 

considered adding student’s registration numbers (an character set information type) in an exceedingly hash 

table enforced victimization C++ programming language, to watch the performance of the techniques as 

shown in the table-4 below. We have a tendency to take note of the amount of probes needed to resolve the 

collision occurred each time an insertion was made.  



  

Table 4: results of variety of probes by every rule on a sample information 
 

Registration   

number 

Linear probing  

(probes)  

Quadratic 

probing  

(probes)  

Double 

hashing  

(probes)  

K/FCS/05/356  0  0  0  

K/FCS/05/214  4  2  2  

K/FCS/05/117  0  0  0  

K/FCS/05/714  0  0  0  

K/FCS/05/735  1  1  3  

K/FCS/05/821  0  0  0  

K/FCS/05/434  2  3  0  

K/FCS/05/578  1  1  0  

 

As the variety of probes indicates the number of collisions, from the above table, linear probing has the 

very best variety of probes followed by quadratic probing. Double hashing has the smallest amount variety of 

probes hence minimum collisions. So, double hashing is the best followed by quadratic probing. 

How may we have a tendency to qualify one rule is healthier than another? Primary concern can be the 

expansion of runtime as input set becomes larger. The runtime can be dependent on comparisons made, 

number of statements executed and varying implementations on completely different machines.  

Some programs or algorithms perform simply fine with a little set of data to be processed. However they 

will perform very poorly with an outsized information set. It’s helpful to understand which programs and 
algorithms might exhibit this behavior and avoid potential issues. Here we have a tendency to us that 

specialize in the speed of growth of needed computations because the amount of information grows. Hash 

function is expected to be independent of the dimension of the table, but as collision is inevitable, that 

property is not achieved. As we have seen, the efficiency of linear probing reduces drastically because the 

collision will increase. As a result of the matter of primary clustering, clearly, there are tradeoffs between 

memory efficiency and speed of access. Quadratic probing reduces the effect of clustering, however 

introduces another problem of secondary clustering. Whereas primary and secondary clustering affects the 

efficiency of linear and quadratic probing, clustering is totally avoided with double hashing. This makes 

double hashing best as far as clustering is concerned.  

Since all the techniques are passionate about the amount of things within the table, then they are indirectly 

dependent on the load factor. If load factor exceeds 0.7 thresholds, table's speed drastically degrades. Indeed, length 

of probe sequence is proportional to (load Factor) / (1 – load Factor) value. Quadratic probing tends to be additional 

economical than linear probing if the number of items to be inserted is not greater than the half of the array, as a 

result of it eliminates clustering problem. Based on the above analyses, the subsequent table-5 is deduced. 

Table 5: Summary of the algorithms performance 

Probing 

Sequence 
 

Primary Clustering Secondary Clustering 

Linear Probing   Yes   Yes 

Quadratic Probing   No   Yes 

Double Hashing   No   No 

 

At best case, every of the technique works at O(1). But this is only achieved when there is no collision. 

However as collision occurs, linear probing tends to be less efficient so is quadratic probing and double 

hashing. 



   9 

3. Conclusion 

Hashing could be a search approach used once sorting isn’t required and once interval is of essence. 
Although Hashing is associate economical methodology of looking out and insertion operations, there’s 
continually time-space trade off. Once memory is not restricted, a key may be used as a memory address; in 

this case, the running intervals are going to be reduced. And once there is no time limitation, we will use 

consecutive search, thus there is no want of employing a key as a memory address, and thus, memory is 

reduced. Hashing gives a balance between these two ways – a simplest way to use an affordable quantity of 

each memory and time. The selection of a hash function depends on: 

1. The character of keys and  

2. The distribution of the numbers corresponding with the keys.  

Best course of action:  

3. Separate chaining: if the amount of records is not known in advance  

4. Open addressing: if the amount of the records can be predicted and there is enough for memory on the 

market. In this paper work, load factor of open addressing is always less than or equals to one. To attain 

efficient insertion and searching operation the load factor should be less than 0.75 for linear probing and 

double hashing, and must be less than or equals 0.5 for quadratic probing. 

Double hashing is that the best collision resolution technique, once the scale of the hash table is prime 

number and it avoids clustering. Quadratic probing is also efficient but only when the records to be keep are 

not greater than the half of the table size. It’s drawback of secondary clustering wherever two keys with the 
constant hash value probes the constant position. Linear probing is less complicated to implement and work 

with, however its potency tends to scale back drastically as the number of records approaches the scale of the 

array. 

Acknowledgements 

    We thank the staff and our colleagues from the University of Computer Studies (Meiktila), Myanmar. 

This paper is supported by U Than Tun Naing, and by Daw Myat Myat Moe, Head of Natural Language in 

University of Computer Studies (Meiktila). I’d like to thank them for their constructive data and supporting.  

References 

[1] D.G Bruno, (1999); “Data Structures and Algorithm With Object Oriented Design In C++” (1* Ed). 

Addison Wes-ley Publishing Company-America. PP. 225-248.  

[2] John R. Hubbard (2000); “Data Structures With C++” (1* Ed). McGraw-Hill Companies -New York. PP. 

161-165.  

[3] Herbert Scheldt (1998); “C++: 
The Complete Reference” (3* Ed). McGraw-Hill Companies-Berkeley. PP. 833-841.  

 [4] TCSS 342 Lecture Notes, 2005. University of Washington. 

[5] A. V. Aho, J.D. Ullman, and J.E. Hop croft, Data Structures and Algorithms, 1st ed. Addison-Wesley, 

1983. 

[6] http://en.wikipedia.org/wiki/Open_addressing 

 

 


